Colisiones
Description 
Variables
Calculations
Calculations
Equations
Examples
In case the particles collide, the distribution function
$\displaystyle\frac{df}{dt}\neq 0$
Collisions cause particles of neighboring cells to undergo a collision that takes them to the cell under consideration and particles within the cell being expelled. The first leads to an increase of
| $\displaystyle\frac{df}{dt}=\displaystyle\frac{1}{\tau}(f_{in}-f_{out})$ |
(ID 9077)
In the case of collisions, two particles with velocity
$\sigma(\vec{v}_1,\vec{v}_2\rightarrow\vec{v}_1',\vec{v}_2')d\vec{v}_1'd\vec{v}_2')$
\\n\\nAs the probability that the particles entering the collision are
$f(\vec{x},\vec{v}_1,t)f(\vec{x},\vec{v}_2,t)$
and the displacement occurs as a function of the relative velocity
| $f(\vec{x},\vec{v}_1,t)f(\vec{x},\vec{v}_2,t)|\vec{v}_2-\vec{v}_1|\sigma(\vec{v}_1,\vec{v}_2\rightarrow\vec{v}_12,\vec{v}_22)d\vec{v}_12d\vec{v}_22$ |
(ID 9078)
In the case of contributions to the cell, consider
| $f(\vec{x},\vec{v}_1,t)f(\vec{x},\vec{v}_2,t)|\vec{v}_2-\vec{v}_1|\sigma(\vec{v}_1,\vec{v}_2\rightarrow\vec{v}_12,\vec{v}_22)d\vec{v}_12d\vec{v}_22$ |
Integrating on the speeds that initiate the collision and one of the resulting ones since the other is the contribution to the local distribution function
| $\displaystyle\frac{1}{\tau}f_{in}(\vec{v})=\displaystyle\int d\vec{v}_1d\vec{v}_2d\vec{v}_12f(\vec{x},\vec{v}_1,t)f(\vec{x},\vec{v}_2,t)|\vec{v}_2-\vec{v}_1|\sigma(\vec{v}_1,\vec{v}_2\rightarrow\vec{v}_12,\vec{v})$ |
(ID 9079)
In the case that they leave the cell it is considered
| $f(\vec{x},\vec{v}_1,t)f(\vec{x},\vec{v}_2,t)|\vec{v}_2-\vec{v}_1|\sigma(\vec{v}_1,\vec{v}_2\rightarrow\vec{v}_12,\vec{v}_22)d\vec{v}_12d\vec{v}_22$ |
Integrating on one of the speeds that initiate the collision and both resulting since the other is the contribution to the local distribution function
| $\displaystyle\frac{1}{\tau}f_{out}(\vec{v})=\displaystyle\int d\vec{v}_1d\vec{v}_12d\vec{v}_22f(\vec{x},\vec{v}_1,t)f(\vec{x},\vec{v},t)|\vec{v}-\vec{v}_1|\sigma(\vec{v},\vec{v}_1\rightarrow\vec{v}_12,\vec{v}_22)$ |
(ID 9080)
With the term collisions that contribute
| $f(\vec{x},\vec{v}_1,t)f(\vec{x},\vec{v}_2,t)|\vec{v}_2-\vec{v}_1|\sigma(\vec{v}_1,\vec{v}_2\rightarrow\vec{v}_12,\vec{v}_22)d\vec{v}_12d\vec{v}_22$ |
and those that reduce particles
| $\displaystyle\frac{1}{\tau}f_{in}(\vec{v})=\displaystyle\int d\vec{v}_1d\vec{v}_2d\vec{v}_12f(\vec{x},\vec{v}_1,t)f(\vec{x},\vec{v}_2,t)|\vec{v}_2-\vec{v}_1|\sigma(\vec{v}_1,\vec{v}_2\rightarrow\vec{v}_12,\vec{v})$ |
you get the total exchange factor
| $\displaystyle\frac{1}{\tau}(f_{in}-f_{out})=\displaystyle\int d\vec{v}_1d\vec{v}2d\vec{v}_12(f(\vec{x},\vec{v}2,t)f(\vec{x},\vec{v}_12,t)-f(\vec{x},\vec{v},t)f(\vec{x},\vec{v}_1,t))|\vec{v}-\vec{v}_1|\sigma(\vec{v},\vec{v}_1\rightarrow\vec{v}2,\vec{v}_12)$ |
(ID 9081)
ID:(1112, 0)
