Aproximación de Tiempo de Relajación
Description 
Variables
Calculations
Calculations
Equations
Examples
En primera aproximaci n se puede suponer que la funci n distribuci n debe de asumir la forma de una distribuci n de Maxwell Boltzmann, es decir
| $f^{(0)}(\vec{x},\vec{v},t)=c(\vec{x},t)\left(\displaystyle\frac{m\beta}{2\pi}\right)^{3/2}e^{-\beta m(\vec{v}-\vec{u}(\vec{x},t))^2/2}$ |
(ID 9082)
One way to solve Boltzmann's general equation is to linearize the equation by assuming that the collision term can be written as the difference between the distribution function and the equilibrium solution represented by the distribution function of Maxwell Boltzmann
| $\displaystyle\frac{df}{dt}=-\displaystyle\frac{1}{\tau}(f-f^{(0)})$ |
(ID 9083)
En la aproximaci n Bhatnagar-Gross-Krook la distribuci n en equilibrio se asume como la de un gas de part culas sin interacci n
| $f^{(0)}(\vec{x},\vec{v},t)=c(\vec{x},t)\left(\displaystyle\frac{m\beta}{2\pi}\right)^{3/2}e^{-\beta m(\vec{v}-\vec{u}(\vec{x},t))^2/2}$ |
con
| $f_i^{eq}=\rho\omega_i\left(1+\displaystyle\frac{3\vec{u}\cdot\vec{e}_i}{c}+\displaystyle\frac{9(\vec{u}\cdot\vec{e}_i)^2}{2c^2}-\displaystyle\frac{3u^2}{2c^2}\right)$ |
con
| Modelo | $\omega_i$ | Index |
| 1DQ3 | ? | i=0 |
| - | ? | i=1, 2 |
| 2DQ9 | 4/9 | i=0 |
| - | 1/9 | i=1,...,4 |
| - | 1/36 | i=5,...,8 |
| 3DQ15 | 1/3 | i=0 |
| - | 1/18 | i=1,...,6 |
| - | 1/36 | i=7,...,14 |
| 3DQ19 | ? | i=0 |
| - | ? | i=1,...,6 |
| - | ? | i=7,...,18 |
que se determinan asegurando que la distribuci n equilibrio cumpla las leyes de conservaci n.
(ID 9084)
In the streaming process the particles are moved according to their velocity directions to neighboring cells
| $f_i(\vec{x},t)\leftarrow f_i(\vec{x}+ce_i\delta t,t+\delta t)$ |
where
(ID 9150)
In the case of the discretization in the LBM models we work not with functions of the speed if not with discrete components. In this way the
| $f_i(\vec{x},t)=w_if(\vec{x},\vec{v}_i,t)$ |
where
(ID 8466)
ID:(1114, 0)
