Estimación de Propiedades
Description 
Variables
Calculations
Calculations
Equations
Examples
La concentraci n de part culas en una posici n
| $c(\vec{x},t)=\displaystyle\int d\vec{v} f(\vec{x},\vec{v},t)$ |
(ID 9076)
Si uno desea estimar un par metro macroscopico debe promediar su valor microsc pico ponderado con la funci n de distribuci n
| $c(\vec{x},t)=\displaystyle\int d\vec{v} f(\vec{x},\vec{v},t)$ |
por lo que se expresa como
| $ \chi_k(\vec{x},t) =\displaystyle\frac{1}{c(\vec{x},t)}\displaystyle\int d\vec{v} f(\vec{x},\vec{v},t) \chi_k(\vec{x},\vec{v},t)$ |
(ID 9075)
If the parameters are calculated by averaging over the speed using
| $ \chi_k(\vec{x},t) =\displaystyle\frac{1}{c(\vec{x},t)}\displaystyle\int d\vec{v} f(\vec{x},\vec{v},t) \chi_k(\vec{x},\vec{v},t)$ |
the mass density estimation is obtained by:
| $\rho(\vec{x},t) = m\displaystyle\int f(\vec{x},\vec{v},t)d\vec{v}$ |
(ID 8458)
If the parameters are calculated by averaging over the speed using
| $ \chi_k(\vec{x},t) =\displaystyle\frac{1}{c(\vec{x},t)}\displaystyle\int d\vec{v} f(\vec{x},\vec{v},t) \chi_k(\vec{x},\vec{v},t)$ |
the velocity of the flow is calculated by integrating the velocity distribution function on all velocities by weighing the velocities:
| $\vec{u}(\vec{x},t) = \displaystyle\frac{m}{\rho}\int \vec{v}f(\vec{x},\vec{v},t)d\vec{v}$ |
(ID 8459)
If the parameters are calculated by averaging over the speed using
| $ \chi_k(\vec{x},t) =\displaystyle\frac{1}{c(\vec{x},t)}\displaystyle\int d\vec{v} f(\vec{x},\vec{v},t) \chi_k(\vec{x},\vec{v},t)$ |
and the equipartition theorem is considered, the temperature can be estimated by integrating the kinetic energy weighted by the velocity distribution divided by the gas constant:
| $T(\vec{x},t) = \displaystyle\frac{m}{3R\rho}\displaystyle\int (\vec{v}\cdot\vec{v})f(\vec{x},\vec{v},t)d\vec{v}$ |
(ID 8460)
If the parameters are calculated by averaging over the speed using
| $ \chi_k(\vec{x},t) =\displaystyle\frac{1}{c(\vec{x},t)}\displaystyle\int d\vec{v} f(\vec{x},\vec{v},t) \chi_k(\vec{x},\vec{v},t)$ |
the flow tensor is calculated by integrating the velocity distribution function on all velocities by weighing the velocity differences:
| $\sigma_{ij} = m\displaystyle\int (v_i-u_i)(v_j-u_j)f(\vec{x},\vec{v},t)d\vec{v}$ |
(ID 8461)
ID:(1113, 0)
