Usuario:


Planear

Storyboard

Si el objeto (avión/ave) mantiene un angulo de ataque levemente negativo, puede lograr que parte de la fuerza de sustentación contribuya a impulsar contrarrestando la resistencia. En la media de que la restante sustentación no sea mucho inferior a la fuerza de la gravedad se logra que el objeto se mantenga largamente en el aire. Se puede hablar de un descenso controlado extremadamente lento o planeo.

>Modelo

ID:(466, 0)



Mecanismos

Concepto

>Top



Código
Concepto
Angulo de Planeo
Ángulo de planeo
Fuerzas al volar
Fuerzas en el planeo
Planear

Mecanismos

ID:(15177, 0)



Planear

Descripción

>Top


Una técnica de vuelo es conocida como planeo. En esta técnica, se utilizan las alas tanto para propulsarse como para mantenerse en el aire. Para lograrlo, es esencial ajustar el ángulo de ataque del ala de manera que la fuerza de sustentación compense la fuerza gravitatoria. En consecuencia, el planeo se convierte en un descenso controlado en el que se aprovecha la caída para generar sustentación y, de esta manera, reducir la velocidad de forma controlada.

ID:(1171, 0)



Fuerzas al volar

Descripción

>Top


La clave para el planeo es inclinar el avión o ave hacia adelante, es decir, tener un ángulo negativo representado por angulo de ataque del ala ($\alpha$). Con este ángulo negativo, el vector de la fuerza de sustentación ($F_L$) apunta hacia arriba y hacia adelante en lugar de hacia atrás. Esto da como resultado una fuerza de tracción en lugar de la fuerza de resistencia ($F_W$), lo que impulsa al avión o ave y genera velocidad, y a su vez, crea la sustentación necesaria.



Este mecanismo permite volar, pero es esencial entender que es una especie de caída lenta y controlada, ya que no se logra un una fuerza de sustentación ($F_L$) vertical que contrarreste completamente el propio peso. Por lo tanto, es necesario llevar el planeador a altitudes elevadas o permitir que el ave gane altura inicialmente mediante su propia propulsión. Luego, ambos buscan corrientes ascendentes que les permiten planear dentro de una corriente ascendente que es más fuerte que la velocidad de descenso del planeador. De esta manera, pueden mantenerse en vuelo durante largos períodos de tiempo sin necesidad de aterrizar.

ID:(7044, 0)



Ángulo de planeo

Descripción

>Top


De manera similar a la definición de el angulo de ataque del ala ($\alpha$) como el ángulo entre la línea media del ala y el horizonte, se puede establecer su contraparte en el rango negativo, que se conoce como el ángulo de planeo ($\phi$).

Planeador Jonker JS3 Rapture (Air Cargo Week)

ID:(7047, 0)



Fuerzas en el planeo

Descripción

>Top


En el caso de las fuerzas, tenemos las siguientes acciones:

• la fuerza de sustentación ($F_L$) actúa perpendicularmente al eje del avión o ave.
• la fuerza de resistencia ($F_W$) actúa a lo largo del eje del avión o ave.
• la fuerza gravitacional ($F_g$) ($mg$) actúa verticalmente.

Estas tres fuerzas se representan en el centro del diagrama:

Planeador Jonker JS3 Rapture (Air Cargo Week)

En el lado izquierdo, se observa la componente horizontal, donde la sustentación contrarresta la resistencia, actuando como impulso.

En el lado derecho, se observan las componentes verticales, donde ambas fuerzas aerodinámicas (sustentación y resistencia) se oponen al peso que actúa sobre el centro de masa.

Aunque las fuerzas se equilibran entre sí, el planeador desciende debido a que su dirección de vuelo está determinada por el ángulo de planeo.

ID:(7046, 0)



Angulo de Planeo

Descripción

>Top


El angulo de planeo es aquel angulo de inclinación en que la componente horizontal de la fuerza de tracción contrarresta horizontal de roce mientras que la suma de las de sustentación y roce en dirección vertical contrarrestan la fuerza de gravedad. Esta situación permite un descenso con un angulo igual al angulo de planeo que puede ser pequeño permitiendo un descenso muy lento.

ID:(1586, 0)



Modelo

Concepto

>Top



Variables

Símbolo
Texto
Variables
Unidades
$F_{pw}$
F_pw
Fuerza de resistencia de planeo
N
$F_{pL}$
F_pL
Fuerza de sustentación de planeo
N
$C_L$
C_L
Modelo simple para el Coeficiente de Sustentación
-

Parámetros

Símbolo
Texto
Variables
Unidades
$g$
g
Aceleración gravitacional
m/s^2
$C_W$
C_W
Coeficiente de resistencia
$m$
m
Masa del cuerpo
kg
$S_p$
S_p
Perfil total del objeto
m^2
$S_w$
S_w
Superficie que genera sustentación
m^2


Parámetro seleccionado

Símbolo
Variables
Valor
Unidades
Valor MKS
Unidades MKS

Cálculos

Símbolo
Ecuación
Resuelto
Traducido

Ecuación

#
Ecuación

$ F_L \cos \phi + F_w \sin \phi = m g $

F_L *cos( phi )+ F_w *sin( phi )= m * g


$ F_L \sin \phi = F_w \cos \phi $

F_L *sin( phi )= F_w *cos( phi )


$ F_L = m g \cos\phi $

F_L = m * g *cos( phi )


$ F_W = m g \sin \phi $

F_W = m * g *sin( phi )


$ \tan \phi =\displaystyle\frac{ S_p C_w }{ S_w C_L }$

tan( phi )= S_p * C_w /( S_w * C_L )

ID:(15190, 0)



Ecuación de planeo horizontal

Ecuación

>Top, >Modelo


En el caso del planeo, el objetivo es mantener una velocidad constante, por lo que la fuerza de sustentación ($F_L$) debe generar suficiente propulsión para contrarrestar la fuerza de resistencia ($F_W$).

Para lograr esta fuerza de sustentación ($F_L$), el ave o aeronave genera un un angulo de ataque del ala ($\alpha$) negativo, lo que significa que parte de la fuerza de sustentación ($F_L$) se convierte en fuerza de propulsión. Esta componente de fuerza es igual al seno del ángulo.

La inclinación también conduce a una reducción en la fuerza de resistencia ($F_W$), ya que una parte de esta contribuye a la sustentación. En este caso, la componente que aún contribuye a la resistencia es esta fuerza multiplicada por el coseno del ángulo.

Por lo tanto, la ecuación de fuerza en el plano horizontal se puede expresar como:

$ F_L \sin \phi = F_w \cos \phi $

$\phi$
Ángulo de planeo
$rad$
6128
$F_w$
Fuerza de resistencia de planeo
$N$
6127
$F_L$
Fuerza de sustentación de planeo
$N$
6126



En lugar de utilizar el angulo de ataque del ala ($\alpha$), trabajaremos con el ángulo de planeo ($\phi$).

ID:(4420, 0)



Ecuación de planeo vertical

Ecuación

>Top, >Modelo


En el plano vertical, el ángulo de planeo ($\phi$) provoca una reducción en la fuerza de sustentación ($F_L$) por un factor igual al coseno del ángulo. Por otro lado, hace que la fuerza de resistencia ($F_W$) contribuya a la sustentación con un factor igual al seno del ángulo. Ambas fuerzas deben contrarrestar el peso generado por la masa del cuerpo ($m$) y la aceleración gravitacional ($g$), por lo que obtenemos:

$ F_L \cos \phi + F_w \sin \phi = m g $

$g$
Aceleración gravitacional
9.8
$m/s^2$
5310
$\phi$
Ángulo de planeo
$rad$
6128
$F_w$
Fuerza de resistencia de planeo
$N$
6127
$F_L$
Fuerza de sustentación de planeo
$N$
6126
$m$
Masa del cuerpo
$kg$
6150

ID:(4419, 0)



Fuerza de sustentación en planeo

Ecuación

>Top, >Modelo


Consideremos la fuerza de sustentación ($F_L$), la fuerza de resistencia ($F_W$), la masa del cuerpo ($m$), la aceleración gravitacional ($g$) y el ángulo de planeo ($\phi$).

Si analizamos las fuerzas en el planeo en la dirección vertical:

$ F_L \cos \phi + F_w \sin \phi = m g $



y en la dirección horizontal:

$ F_L \sin \phi = F_w \cos \phi $



podemos resolver el sistema de ecuaciones para obtener la fuerza de sustentación ($F_L$):

$ F_L = m g \cos\phi $

$g$
Aceleración gravitacional
9.8
$m/s^2$
5310
$\phi$
Ángulo de planeo
$rad$
6128
$F_L$
Fuerza de sustentación de planeo
$N$
6126
$m$
Masa del cuerpo
$kg$
6150

Si consideramos la fuerza de sustentación ($F_L$), la fuerza de resistencia ($F_W$), la masa del cuerpo ($m$), la aceleración gravitacional ($g$) y el ángulo de planeo ($\phi$), la fuerza en el planeo en la dirección vertical es:

$ F_L \cos \phi + F_w \sin \phi = m g $



y en la dirección horizontal es:

$ F_L \sin \phi = F_w \cos \phi $



lo que nos permite eliminar la fuerza de resistencia ($F_W$), resultando en:

$F_L=F_W\displaystyle\frac{\cos\phi}{\sin\phi} \rightarrow F_W(\sin^2\phi+\cos^2\phi)=mg\sin\phi$



Por lo tanto, la fuerza de sustentación ($F_L$) es:

$ F_L = m g \cos\phi $

ID:(4421, 0)



Fuerza de resistencia en planeo

Ecuación

>Top, >Modelo


Consideremos la fuerza de sustentación ($F_L$), la fuerza de resistencia ($F_W$), la masa del cuerpo ($m$), la aceleración gravitacional ($g$) y el ángulo de planeo ($\phi$).

Si analizamos las fuerzas durante el planeo en la dirección vertical:

$ F_L \cos \phi + F_w \sin \phi = m g $



y en la dirección horizontal:

$ F_L \sin \phi = F_w \cos \phi $



podemos resolver el sistema de ecuaciones para obtener la fuerza de resistencia ($F_W$):

$ F_W = m g \sin \phi $

$g$
Aceleración gravitacional
9.8
$m/s^2$
5310
$\phi$
Ángulo de planeo
$rad$
6128
$F_w$
Fuerza de resistencia de planeo
$N$
6127
$m$
Masa del cuerpo
$kg$
6150

Si consideramos la fuerza de sustentación ($F_L$), la fuerza de resistencia ($F_W$), la masa del cuerpo ($m$), la aceleración gravitacional ($g$) y el ángulo de planeo ($\phi$), la fuerza durante el planeo en la dirección vertical es:

$ F_L \cos \phi + F_w \sin \phi = m g $



y en la dirección horizontal es:

$ F_L \sin \phi = F_w \cos \phi $



lo que nos permite eliminar la fuerza de sustentación ($F_L$), resultando en:

$F_L=F_W\displaystyle\frac{\cos\phi}{\sin\phi} \rightarrow F_W(\sin^2\phi+\cos^2\phi)=mg\sin\phi$



Entonces, la fuerza de resistencia ($F_W$) debe ser:

$ F_W = m g \sin \phi $

ID:(4422, 0)



Ángulo de planeo

Ecuación

>Top, >Modelo


La fuerza de sustentación ($F_L$) y la fuerza de resistencia ($F_W$) dependen de la masa del cuerpo ($m$), la aceleración gravitacional ($g$), y el ángulo de planeo ($\phi$). Ambas ecuaciones nos permiten calcular el ángulo de planeo ($\phi$) en términos de la fuerza de sustentación ($F_L$) y la fuerza de resistencia ($F_W$).

Dado que la fuerza de sustentación ($F_L$) y la fuerza de resistencia ($F_W$) son funciones de la masa del cuerpo ($m$), la velocidad respecto del medio ($v$), la superficie que genera sustentación ($S_w$), el perfil total del objeto ($S_p$), el coeficiente de sustentación ($C_L$) y el coeficiente de resistencia ($C_W$), podemos mostrar que el ángulo de planeo ($\phi$) es:

$ \tan \phi =\displaystyle\frac{ S_p C_w }{ S_w C_L }$

$\phi$
Ángulo de planeo
$rad$
6128
$C_w$
Coeficiente de resistencia
$-$
6122
$C_L$
Modelo simple para el Coeficiente de Sustentación
$-$
6164
$S_p$
Perfil total del objeto
$m^2$
6123
$S_w$
Superficie que genera sustentación
$m^2$
6117

Consideremos la fuerza de sustentación ($F_L$), la fuerza de resistencia ($F_W$), la masa del cuerpo ($m$), la aceleración gravitacional ($g$) y el ángulo de planeo ($\phi$). Con estas fuerzas, la fuerza de sustentación se calcula como:

$ F_L = m g \cos\phi $



y la resistencia como:

$ F_W = m g \sin \phi $



Podemos determinar el ángulo de planeo ($\phi$) dividiendo la fuerza de sustentación ($F_L$) por la fuerza de resistencia ($F_W$), lo que resulta en:

$\tan\phi=\displaystyle\frac{F_W}{F_L}$



Donde la fuerza de resistencia ($F_W$) se calcula utilizando la ecuación:

$ F_W =\displaystyle\frac{1}{2} \rho S_p C_W v ^2$



con el perfil total del objeto ($S_p$) y el coeficiente de resistencia ($C_W$). De manera similar, la fuerza de sustentación ($F_L$) se calcula como:

$ F_L =\displaystyle\frac{1}{2} \rho S_w C_L v ^2$



con la superficie que genera sustentación ($S_w$) y el coeficiente de sustentación ($C_L$).

Con ambas fuerzas, podemos determinar el ángulo de ataque necesario para planear como:

$ \tan \phi =\displaystyle\frac{ S_p C_w }{ S_w C_L }$

ID:(4423, 0)