Controlando la Luz

Storyboard

>Model

ID:(424, 0)



Refractive Index Change

Description

>Top


Cuando la luz en un medio con velocidad de la luz c_i alcanza una medio con una velocidad de la luz c_e el haz en en parte reflejado y en parte transmitido.

La transmisión sin embargo no solo puede perder intensidad, por la fracción reflejada, también puede ser desviada. Este desvío se denomina refracción.

ID:(429, 0)



Angulo where Total Refraction occurs

Equation

>Top, >Model


Cuando la luz pasa de un medio de menor a mayor velocidad se puede dar la situación de que el angulo de incidencia es tan grande que no existe un angulo de refracción ya que este tiene que ser mayor que el incidente y no puede ser mayor que 90 grados (\pi/2). En ese limite, en que \theta_r=\pi/2 el angulo incidente es igual a

$\sin \theta_c =\displaystyle\frac{ n_e }{ n_i }$

$\theta_c$
Angulo de reflexión total
$rad$
$n_i$
Indice de refracción en el medio incidente
$-$
$n_e$
Refractive Index over the Medium 1 to Medium 2
$-$

En el caso de reflexión total el ángulo de refracción es \theta_e=\pi/2 y con ello el seno igual a uno. Empleando la ley de Snell

$ n_i \sin \theta_i = n_e \sin \theta_r $

\\n\\npodemos calcular el ángulo de incidencia \theta_i, que definimos como ángulo crítico \theta_c, con:\\n\\n

$n_i\sin\theta_c=n_e$



por lo que se puede escribir

$\sin \theta_c =\displaystyle\frac{ n_e }{ n_i }$

ID:(3344, 0)



Snell's Law and Refraction Index

Equation

>Top, >Model


La ley de Snell para el paso de la luz de un medio de indice n_i bajo un ángulo \theta_i a un medio de indice n_e en que se refracta bajo un angulo \theta_e se escribe como:

$ n_i \sin \theta_i = n_e \sin \theta_r $

$\theta_i$
Angulo de incidente
$rad$
$\theta_r$
Angulo de refracción
$rad$
$n_i$
Indice de refracción en el medio incidente
$-$
$n_e$
Refractive Index over the Medium 1 to Medium 2
$-$

Como la relación entre los ángulos de incidencia y refracción es

$\displaystyle\frac{ \sin\theta_i }{\sin \theta_r }=\displaystyle\frac{ c_i }{ c_e }$



y el indice de refracción se define como

$ n =\displaystyle\frac{ c }{ v }$

\\n\\nse tiene que con\\n\\n

$n_i=\displaystyle\frac{c}{c_i}$

y\\n\\n

$n_e=\displaystyle\frac{c}{c_e}$

\\n\\nque\\n\\n

$\displaystyle\frac{c_i}{c_e}=\displaystyle\frac{c_i}{c}\displaystyle\frac{c}{c_e}=\displaystyle\frac{n_e}{n_i}=\displaystyle\frac{\sin\theta_i}{\sin\theta_e}$



por lo que resulta

$ n_i \sin \theta_i = n_e \sin \theta_r $

ID:(3343, 0)



Total Refraction

Image

>Top


Cuando se pasa de un medio en que la velocidad de la luz es menor a uno que es mayor existe la situación de que a un ángulo de incidencia muy grande no existe un correspondiente angulo de refracción. En estos casos la luz solo se refleja y hablamos de reflexión total.

En la siguiente imagen se ven distintos haces que al llegar a ser muy grande el angulo comienzan a sufrir reflexión total:

ID:(1851, 0)



Refraction Index

Equation

>Top, >Model


The refractive index, denoted as $n$, is defined as the ratio of the speed of light in a vacuum, denoted as $c$, to the speed of light in the medium, denoted as $c_m$:

$ n =\displaystyle\frac{ c }{ v }$

$n$
Air-Lens Refractive Index
$-$
$c$
Speed of Light
299792458
$m/s$
$v$
Speed of Light in medium
$m/s$

ID:(3192, 0)



Reciprocal of the Refractive Index

Equation

>Top, >Model


Si n_i el indice de refracción para el paso de luz del medio i al medio e. En el caso inverso el indice de refracción es n_e y se puede calcular del indice para el paso de 1 a 2:

$ n_i =\displaystyle\frac{1}{ n_e }$

$n_i$
Indice de refracción en el medio incidente
$-$
$n_e$
Refractive Index over the Medium 1 to Medium 2
$-$

ID:(3428, 0)



Refraction of Light Beam in Vacuum Medium

Image

>Top


Paso de medio con mayor a menor velocidad

ID:(1849, 0)



Refraction of Light Beam in Medium to Vacuum

Image

>Top


Cuando un haz pasa de un medio de menor velocidad v_i a uno con mayor v_e su dirección se altera de modo que el angulo de incidencia \theta_i se agranda:

ID:(1850, 0)



Refracción de la luz

Image

>Top


Paso de la luz por un objeto

ID:(1853, 0)



Displacement

Equation

>Top, >Model


Para calcular la distancia d se puede escribir

d=x_2\cos\theta_2

Para obtener x_2 se puede empelar

x_1-x_2=h\tan\theta_1

y se puede obtener x_1 de

x_1=h\tan\theta_2

Con ello se obtiene

$ d = h \displaystyle\frac{\sin( \theta_1 - \theta_2 )}{\cos \theta_1 }$

$\theta_i$
Angulo de incidente
$rad$
$\theta_r$
Angulo de refracción
$rad$
$h$
Medium Thickness
$m$
$d$
Ray Shift
$m$

ID:(3345, 0)