Saltar y límite por Energía

Storyboard

>Model

ID:(321, 0)



General definition of energy

Equation

>Top, >Model


Carnot was the first to describe energy in terms of the path and the necessary force to traverse it. Progressing along a path with a force requires or generates energy. This corresponds to the equation:

$ \Delta W = \vec{F} \cdot \Delta\vec{s} $



In the continuous limit, the sum can be represented as an integral:

$ W =\displaystyle\int_C \vec{F} \cdot d \vec{s} $

$\vec{F}$
Force (vector)
$N$
$\vec{s}$
Posición (vector)
$m$
$W$
Work
$J$

Expanding the concept to a longer path involves summing up the energy required for each path element:

$\bar{W}=\displaystyle\sum_i \vec{F}_i\cdot\Delta\vec{s}_i$



However, the value of this equation represents just an average energy required or generated. The precise energy is obtained when the steps become very small, allowing the force to be considered constant within them:

$W=\displaystyle\sum_i \mbox{lim}_{\Delta\vec{s}_i\rightarrow\vec{0}}\vec{F}_i\cdot\Delta\vec{s}_i$



In this limit, the energy corresponds to the integral along the traveled path, giving us:

$ W =\displaystyle\int_C \vec{F} \cdot d \vec{s} $

ID:(3601, 0)



Elastic potential energy

Equation

>Top, >Model


En el caso elástico (resorte) la fuerza es



la energía

$ \Delta W = \vec{F} \cdot \Delta\vec{s} $



se puede mostrar que en este caso es

$ V =\displaystyle\frac{1}{2} k x ^2$

$x$
Elongation of the Spring
$m$
$k$
Hooke Constant
$N/m$
$V$
Potential Energy
$J$

En el caso elástico (resorte) la fuerza es



con k la constante del resorte y x la elongación/compresión del resorte. La variación de la energía potencial es

$ \Delta W = \vec{F} \cdot \Delta\vec{s} $

\\n\\nLa diferencia\\n\\n

$\Delta x = x_2 - x_1$

\\n\\ncorresponde al camino recorrido por lo que\\n\\n

$\Delta W=k,x,\Delta x=k(x_2-x_1)\displaystyle\frac{(x_1+x_2)}{2}=\displaystyle\frac{k}{2}(x_2^2-x_1^2)$



y con ello la energía potencial elástica es

$ V =\displaystyle\frac{1}{2} k x ^2$

ID:(3246, 0)



Translational Kinetic Energy

Equation

>Top, >Model


In the case of studying translational motion, the definition of energy

$ \Delta W = \vec{F} \cdot \Delta\vec{s} $



is applied to Newton's second law

$ F = m_i a $



resulting in the expression

$ K_t =\displaystyle\frac{1}{2} m_i v ^2$

$m_i$
Inertial Mass
$kg$
$v$
Speed
$m/s$
$K_t$
Translational Kinetic Energy
$J$

The energy required for an object to transition from velocity $v_1$ to velocity $v_2$ can be calculated using the definition with

$ \Delta W = \vec{F} \cdot \Delta\vec{s} $



Using the second law of Newton, this expression can be rewritten as

$\Delta W = m a \Delta s = m\displaystyle\frac{\Delta v}{\Delta t}\Delta s$



Employing the definition of velocity with

$ \bar{v} \equiv\displaystyle\frac{ \Delta s }{ \Delta t }$



we obtain

$\Delta W = m\displaystyle\frac{\Delta v}{\Delta t}\Delta s = m v \Delta v$



where the difference in velocities is

$\Delta v = v_2 - v_1$



Furthermore, the velocity itself can be approximated by the average velocity

$v = \displaystyle\frac{v_1 + v_2}{2}$



Using both expressions, we arrive at

$\Delta W = m v \Delta v = m(v_2 - v_1)\displaystyle\frac{(v_1 + v_2)}{2} = \displaystyle\frac{m}{2}(v_2^2 - v_1^2)$



Thus, the change in energy is given by

$\Delta W = \displaystyle\frac{m}{2}v_2^2 - \displaystyle\frac{m}{2}v_1^2$



In this way, we can define kinetic energy

$ K_t =\displaystyle\frac{1}{2} m_i v ^2$

ID:(3244, 0)



Kinetic Energy of Rotation

Equation

>Top, >Model


In the case being studied of translational motion, the definition of energy

$ \Delta W = T \Delta\theta $



is applied to Newton's second law

$ T = I \alpha $



resulting in the expression

$ K_r =\displaystyle\frac{1}{2} I \omega ^2$

$\omega$
Angular Speed
$rad/s$
$K_r$
Kinetic energy of rotation
$J$
$I$
Moment of inertia for axis that does not pass through the CM
$kg m^2$

The energy required for an object to change its angular velocity from $\omega_1$ to $\omega_2$ can be calculated using the definition

$ \Delta W = T \Delta\theta $



Applying Newton's second law, this expression can be rewritten as

$\Delta W=I \alpha \Delta\theta=I\displaystyle\frac{\Delta\omega}{\Delta t}\Delta\theta$



Using the definition of angular velocity

$ \bar{\omega} \equiv\displaystyle\frac{ \Delta\theta }{ \Delta t }$



we get

$\Delta W=I\displaystyle\frac{\Delta\omega}{\Delta t}\Delta\theta=I \omega \Delta\omega$



The difference in angular velocities is

$\Delta\omega=\omega_2-\omega_1$



On the other hand, angular velocity itself can be approximated with the average angular velocity

$\omega=\displaystyle\frac{\omega_1+\omega_2}{2}$



Using both expressions, we obtain the equation

$\Delta W=I \omega \Delta \omega=I(\omega_2-\omega_1)\displaystyle\frac{(\omega_1+\omega_2)}{2}=\displaystyle\frac{I}{2}(\omega_2^2-\omega_1^2)$



Thus, the change in energy is given by

$\Delta W=\displaystyle\frac{I}{2}\omega_2^2-\displaystyle\frac{I}{2}\omega_1^2$



This allows us to define kinetic energy as

$ K_r =\displaystyle\frac{1}{2} I \omega ^2$

ID:(3255, 0)



Total Kinetic Energy

Equation

>Top, >Model


Kinetic energy can be of translation and/or rotation. Therefore, the total kinetic energy is the sum of both:

$ K = K_t + K_r $

$K_r$
Kinetic energy of rotation
$J$
$K$
Total Kinetic Energy
$J$
$K_t$
Translational Kinetic Energy
$J$

ID:(3686, 0)



Gravitational potential energy at the planet's surface

Equation

>Top, >Model


At the surface of the planet, the gravitational force is

$ F_g = m_g g $



and the energy

$ \Delta W = \vec{F} \cdot \Delta\vec{s} $



can be shown to be

$ V = m g z $

$g$
Gravitational Acceleration
9.8
$m/s^2$
$z$
Height above Floor
$m$
$m$
Mass
$kg$
$V$
Potential Energy
$J$

As the gravitational force is

$ F_g = m_g g $



with $m$ representing the mass. To move this mass from a height $h_1$ to a height $h_2$, a distance of

$ V = m g ( h_2 - h_1 )$



is covered. Therefore, the energy

$ \Delta W = \vec{F} \cdot \Delta\vec{s} $



with $\Delta s=\Delta h$ gives us the variation in potential energy:

$\Delta W = F\Delta s=mg\Delta h=mg(h_2-h_1)=U_2-U_1=\Delta V$



thus, the gravitational potential energy is

$ V = m g z $

ID:(3245, 0)