Corrientes en el Cuerpo

Storyboard

>Model

ID:(333, 0)



Case of Blood

Definition

ID:(772, 0)



Corrientes en el Cuerpo

Description

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$a$
a
Acceleration of charge in the conductor
m/s^2
$\varphi_0$
phi_0
Base electrical potential
V
$c$
c
Charge concentration
1/m^3
$c_i$
c_i
Concentration of ions i
mol/m^3
$G$
G
Conductance
S
$\kappa_e$
kappa_e
Conductivity
1/Ohm m
$L$
L
Conductor length
m
$I$
I
Current
A
$E$
E
Electric eield
V/m
$\varphi$
phi
Electric potential
V
$G_{h1}$
G_h1
Hydraulic conductance 1
m^4s/kg
$G_{h2}$
G_h2
Hydraulic conductance 2
m^4s/kg
$G_{h3}$
G_h3
Hydraulic conductance 3
m^4s/kg
$R_{h1}$
R_h1
Hydraulic Resistance 1
kg/m^4s
$R_{h2}$
R_h2
Hydraulic Resistance 2
kg/m^4s
$R_{h3}$
R_h3
Hydraulic Resistance 3
kg/m^4s
$ds$
ds
Infinitesimal distance
m
$v_{max}$
v_max
Maximum Speed
m/s
$c_1$
c_1
Molar Concentration 1
mol/m^3
$c_2$
c_2
Molar Concentration 2
mol/m^3
$c_3$
c_3
Molar Concentration 3
mol/m^3
$c_4$
c_4
Molar concentration 4
mol/m^3
$c_5$
c_5
Molar concentration 5
mol/m^3
$\Lambda_1$
Lambda_1
Molar conductivity 1
m^2/Ohm mol
$\Lambda_2$
Lambda_2
Molar conductivity 2
m^2/Ohm mol
$\Lambda_3$
Lambda_3
Molar conductivity 3
m^2/Ohm mol
$\Lambda_4$
Lambda_4
Molar conductivity 4
m^2/Ohm mol
$\Lambda_5$
Lambda_5
Molar conductivity 5
m^2/Ohm mol
$\Lambda_i$
Lambda_i
Molar conductivity ions of type i
m^2/Ohm mol
$G_{pt}$
G_pt
Parallel total hydraulic conductance
m^4s/kg
$s_1$
s_1
Position 1
m
$s_2$
s_2
Position 2
m
$\Delta\varphi$
Dphi
Potential difference
V
$d\varphi$
dphi
Potential difference
V
$R$
R
Resistance
Ohm
$R_i$
R_i
Resistance i
Ohm
$R_s$
R_s
Resistance in Series
Ohm
$\rho_e$
rho_e
Resistivity
Ohm m
$S$
S
Section of Conductors
m^2
$\tau$
tau
Time between collisions
s
$R_{pt}$
R_pt
Total hydraulic resistance in parallel
kg/m^4s
$R_{st}$
R_st
Total hydraulic resistance in series
kg/m^4s
$G_{st}$
G_st
Total Series Hydraulic Conductance
m^4s/kg

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

The electric eield ($E$), together with the electron Charge ($e$), generates a force that, through the mass of the electron ($m_e$), results in the acceleration of charge in the conductor ($a$). This relationship can be expressed as:

$ a =\displaystyle\frac{ e E }{ m_e }$

(ID 3843)

The conductance ($G$) is defined as the inverse of the resistance ($R$). This relationship is expressed as:

$ G =\displaystyle\frac{1}{ R }$

(ID 3847)

The resistivity ($\rho_e$) is defined as the inverse of the conductivity ($\kappa_e$). This relationship is expressed as:

$ \rho_e =\displaystyle\frac{1}{ \kappa_e } $

(ID 3848)

Dado que con concentration of ions i $mol/m^3$, conductivity $1/Ohm m$ and molar conductivity ions of type i $m^2/Ohm mol$

$ \kappa_e =\displaystyle\sum_i \Lambda_i c_i $



se tiene que para el caso de un ion es con concentration of ions i $mol/m^3$, conductivity $1/Ohm m$ and molar conductivity ions of type i $m^2/Ohm mol$:

$ \kappa = \Lambda_1 c_1 $

(ID 3216)

The current ($I$) can be calculated from the electric eield ($E$), in combination with the electron Charge ($e$), the charge concentration ($c$), the mass of the electron ($m_e$), the time between collisions ($\tau$), and the section of Conductors ($S$), using the following relationship:

$ I =\displaystyle\frac{ e ^2 E }{2 m_e } \tau c S $

(ID 3837)

La distancia entre los extremos del conductor, a lo largo de este, dan la distancia sobre la cual esta actuando la diferencia de potencial. Si los extremos se encuentran en x_1 y x_2 la distancia con ser

$ dx = x_2 - x_1 $

(ID 3846)

The electric eield ($E$) is generated by the potential difference ($\Delta\varphi$) between two electrodes, separated by a distance of a conductor length ($L$). This value can be calculated using the following expression:

$ E =\displaystyle\frac{ \Delta\varphi }{ L }$

(ID 3838)

The parallel connection of the hydraulic conductance 1 ($G_{h1}$), and the hydraulic conductance 2 ($G_{h2}$) results in an equivalent combination of the parallel total hydraulic conductance ($G_{pt}$):

$ G_{pt} = G_{h1} + G_{h2} $

(ID 3856)

The parallel connection of the hydraulic conductance 1 ($G_{h1}$), the hydraulic conductance 2 ($G_{h2}$), and the hydraulic conductance 3 ($G_{h3}$) results in an equivalent combination of the parallel total hydraulic conductance ($G_{pt}$):

$ G_{pt} = G_{h1} + G_{h2} + G_{h3} $

(ID 3857)

The series combination of the hydraulic conductance 1 ($G_{h1}$) and the hydraulic conductance 2 ($G_{h2}$) results in a total sum of the total Series Hydraulic Conductance ($G_{st}$):

$\displaystyle\frac{1}{ G_{st} }=\displaystyle\frac{1}{ G_{h1} }+\displaystyle\frac{1}{ G_{h2} }$

(ID 3860)

The series combination of the hydraulic conductance 1 ($G_{h1}$), the hydraulic conductance 2 ($G_{h2}$) and the hydraulic conductance 3 ($G_{h3}$) results in a total sum of the total Series Hydraulic Conductance ($G_{st}$):

$\displaystyle\frac{1}{ G_{st} }=\displaystyle\frac{1}{ G_{h1} }+\displaystyle\frac{1}{ G_{h2} }+\displaystyle\frac{1}{ G_{h3} }$

(ID 3861)

Given that

$ \kappa_e =\displaystyle\sum_i \Lambda_i c_i $



In the case of two types of ions, it is:

$ \kappa_e = \Lambda_1 c_1 + \Lambda_2 c_2 $

(ID 3850)

Given that

$ \kappa_e =\displaystyle\sum_i \Lambda_i c_i $



In the case of three types of ions, it is:

$ \kappa_e = \Lambda_1 c_1 + \Lambda_2 c_2 + \Lambda_3 c_3 $

(ID 3851)

Given that

$ \kappa_e =\displaystyle\sum_i \Lambda_i c_i $



In the case of two types of ions, it is:

$ \kappa_e = \Lambda_1 c_1 + \Lambda_2 c_2 + \Lambda_3 c_3 + \Lambda_4 c_4 $

(ID 3852)

Given that

$ \kappa_e =\displaystyle\sum_i \Lambda_i c_i $



In the case of two types of ions, it is:

$ \kappa_e = \Lambda_1 c_1 + \Lambda_2 c_2 + \Lambda_3 c_3 + \Lambda_4 c_4 + \Lambda_5 c_5 $

(ID 3853)

In a time between collisions ($\tau$), the electron is accelerated by the electric eield ($E$), in combination with the electron Charge ($e$) and the mass of the electron ($m_e$), until it reaches the maximum Speed ($v_{max}$). This process is described by the following relationship:

$ v_{max} =\displaystyle\frac{ e E }{ m_e } \tau $

(ID 3836)

If the current ($I$) is expressed using the potential difference ($\Delta\varphi$) instead of the electric eield ($E$), the microscopic form of Ohm's law is obtained. This equation involves the electron Charge ($e$), the charge concentration ($c$), the mass of the electron ($m_e$), the time between collisions ($\tau$), the section of Conductors ($S$), and the conductor length ($L$), through the following relationship:

$ \Delta\varphi =\displaystyle\frac{2 m_e }{ e ^2 \tau c }\displaystyle\frac{ L }{ S } I $

(ID 3839)

Traditional Ohm's law establishes a relationship between the potential difference ($\Delta\varphi$) and the current ($I$) through the resistance ($R$), using the following expression:

$ \Delta\varphi = R I $

(ID 3214)

Si los extremos del conductor est n a los potenciales \varphi_1 y \varphi_2 existir con una diferencia de potencial igual a

$ \Delta\varphi = \varphi_2 - \varphi_1 $

(ID 3845)

Using the resistivity ($\rho_e$) along with the geometric parameters the conductor length ($L$) and the section of Conductors ($S$), the resistance ($R$) can be defined through the following relationship:

$ R = \rho_e \displaystyle\frac{ L }{ S }$

(ID 3841)

Al conectarse resistencias R_i en serie en cada una ocurrir una ca da de potencial \Delta\varphi_i cuya suma ser igual a la diferencia de potencial total

$\Delta\varphi=\displaystyle\sum_i \Delta\varphi_i$



Como la corriente I es igual en todas las resistencias la ley de Ohm en la i-esima resistencia ser

$\Delta\varphi_i=R_i I$



Si se reemplaza esta expresi n en la suma de las diferencias de potencial se obtiene

$\Delta\varphi=\displaystyle\sum_i R_iI$



por lo que la resistencia en serie se calcula como la suma de las resistencias individuales con :

$ R_s =\displaystyle\sum_ i R_i $

(ID 3215)

From the microscopic form of Ohm's law, a factor specific to the material of the conductor can be identified. This allows the resistivity ($\rho_e$) to be defined in terms of the electron Charge ($e$), the charge concentration ($c$), the mass of the electron ($m_e$), and the time between collisions ($\tau$), using the following relationship:

$ \rho_e =\displaystyle\frac{2 m_e }{ e ^2 \tau c }$

(ID 3840)

The parallel combination of the hydraulic Resistance 1 ($R_{h1}$) and the hydraulic Resistance 2 ($R_{h2}$) results in a total equivalent of the total hydraulic resistance in series ($R_{st}$):

$\displaystyle\frac{1}{ R_{pt} }=\displaystyle\frac{1}{ R_{h1} }+\displaystyle\frac{1}{ R_{h2} }$

(ID 3858)

The parallel combination of the hydraulic Resistance 1 ($R_{h1}$), the hydraulic Resistance 2 ($R_{h2}$), and the hydraulic Resistance 3 ($R_{h3}$) results in a total equivalent of the total hydraulic resistance in series ($R_{st}$):

$\displaystyle\frac{1}{ R_{pt} }=\displaystyle\frac{1}{ R_{h1} }+\displaystyle\frac{1}{ R_{h2} }+\displaystyle\frac{1}{ R_{h3} }$

(ID 3859)

The series combination of the hydraulic Resistance 1 ($R_{h1}$) and the hydraulic Resistance 2 ($R_{h2}$) results in a total sum of the total hydraulic resistance in series ($R_{st}$):

$ R_{st} = R_{h1} + R_{h2} $

(ID 3854)

The series combination of the hydraulic Resistance 1 ($R_{h1}$), the hydraulic Resistance 2 ($R_{h2}$) and the hydraulic Resistance 3 ($R_{h3}$) results in a total sum of the total hydraulic resistance in series ($R_{st}$):

$ R_{st} = R_{h1} + R_{h2} + R_{h3} $

(ID 3855)

Como la conductividad es proporcional a la concentraci n de los iones

$ \kappa_i = \Lambda_i c_i $



se puede definir una conductividad total como la suma de las conductividades de los distintos iones. Con la definici n de la conductividad molar

$ \Lambda_i =\displaystyle\frac{ Q_i ^2 \tau_i }{2 m_i } $



se tiene que

$ \kappa_e =\displaystyle\sum_i \Lambda_i c_i $

(ID 3849)


ID:(333, 0)