Electrocardiograma

Storyboard

>Model

ID:(336, 0)



Electrocardiogram

Image

ID:(1938, 0)



Heart

Note

ID:(804, 0)



Phases of Heartbeat

Quote

ID:(1939, 0)



Polarization during Heartbeat

Exercise

ID:(1940, 0)



Electrocardiograma

Description

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\theta$
theta
Angle between speed and magnetic field
rad
$Q$
Q
Charge
C
$E$
E
Electric eield
V/m
$F$
F
Force
N
$\vec{F}$
&F
Force
N
$B$
B
Magnetic flux density
T
$\vec{B}$
&B
Magnetic flux density (vector)
T
$m$
m
Particle mass
kg
$v$
v
Particle speed
m/s
$r$
r
Radius
m
$r$
r
Radius of gyration of particle in magnetic field
m
$v$
v
Speed
m/s
$q$
q
Test charge
C

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

La ecuaci n de movimiento se deriva del equilibrio entre la fuerza generada por the magnetic flux density ($B$) actuando sobre the charge ($q$) y the particle mass ($m$), que se desplaza con the particle speed ($v$) a the radius ($r$). Esto se expresa mediante la siguiente relaci n:

$ m \displaystyle\frac{ v ^2}{ r }= q v B $

(ID 3229)

(ID 804)

The force \vec{F} that represents mathematically as current the electric fields \vec{E} and magnetic \vec{B} on a particle is called Lorentz's law. If the particle charge is q and it has a velocity \vec{v} the Lorentz force will be

$ \vec{F} = q ( \vec{E} + \vec{v} \times \vec{B} )$

(ID 3219)

The force ($F$), which generates the magnetic flux density ($B$) on the charge ($q$), moving under a angle between speed and magnetic field ($\theta$) with the speed ($v$), is expressed as:

$ F = q v B \sin \theta $

(ID 3873)

The orbit at a radius of gyration of particle in magnetic field ($r$) depends on the particle mass ($m$), the speed ($v$), the charge ($Q$), and the magnetic flux density ($B$), and is described by the following relationship:

$ r =\displaystyle\frac{ m v }{ q B }$

(ID 3874)


ID:(336, 0)