Benützer:


Schwerkraft und Gezeiten in Konjunktion

Storyboard

Gravitation und Zentrifugalbeschleunigung erzeugen Gezeiten, die Bewegung der Ozeane, die ihren Pegel alle 12 Stunden anheben und senken. Ihre Ursache kann sowohl der Mond als auch die Sonne sein.

>Modell

ID:(1523, 0)



Schwerkraft und Gezeiten in Konjunktion

Storyboard

Gravitation und Zentrifugalbeschleunigung erzeugen Gezeiten, die Bewegung der Ozeane, die ihren Pegel alle 12 Stunden anheben und senken. Ihre Ursache kann sowohl der Mond als auch die Sonne sein.

Variablen

Symbol
Text
Variable
Wert
Einheiten
Berechnen
MKS-Wert
MKS-Einheiten
$\theta$
theta
Breitengrad des Ortes
rad
$d$
d
Entfernung des Himmelsobjektplaneten
m
$M$
M
Masa del cuerpo que genera la marea
kg
$R$
R
Planetenradio
m
$G$
G
Universelle Gravitationskonstante
m^3/kg s^2
$\Delta a_{cx}$
Da_cx
Variation der Beschleunigung in Richtung des Sterns, in Verbindung
m/s^2
$\Delta a_{cy}$
Da_cy
Variation der Beschleunigung senkrecht zur Richtung des Sterns
m/s^2
$a_c$
a_c
Vom Himmelskörper erzeugte Beschleunigung, in Konjunktion
m/s^2

Berechnungen


Zuerst die Gleichung auswählen:   zu ,  dann die Variable auswählen:   zu 

Symbol
Gleichung
Gelöst
Übersetzt

Berechnungen

Symbol
Gleichung
Gelöst
Übersetzt

 Variable   Gegeben   Berechnen   Ziel :   Gleichung   Zu verwenden



Gleichungen


Beispiele


mechanisms

Es gibt einen Beitrag von der Gravitationsattraktion des Himmelsk rpers, der Wasser zum quator hin zieht:

image

Die Hypotenuse des Dreiecks ist mit dem senkrechten Kathetens durch die Gleichung verbunden:

$R\sin\theta$



und mit dem horizontalen Katheten durch:

$d - R\cos\theta$



Nach dem Satz des Pythagoras ist die Summe der Quadrate der Katheten gleich dem Quadrat der Hypotenuse, daher ergibt sich:

$R^2\sin^2\theta+(d-R\cos\theta)^2=d^2+R^2-2Rd\cos\theta$

Es gibt einen Beitrag von der Gravitationsattraktion des Himmelsk rpers, der das Wasser zum Radius hin zieht, was dazu neigt, das Wasser in Richtung des quators zu verschieben:

Bild

Die Hypotenuse des Dreiecks wird durch das senkrechte Bein gebildet:

$R\sin\theta$



und das horizontale Bein:

$d - R\cos\theta$



Gem dem Satz des Pythagoras haben wir:

$R^2\sin^2\theta+(d-R\cos\theta)^2=d^2+R^2-2Rd\cos\theta$


model

Um die Variation der Beschleunigung senkrecht zum Radius zu bestimmen, k nnen wir die hnlichkeit von Dreiecken verwenden, um die Beziehung

$\displaystyle\frac{\Delta a_{cy}}{a_c}$



mit der L nge

$d-R\cos\theta$



und der Hypotenuse

$\sqrt{d^2+R^2-2dR\cos\theta}$



auszugleichen.

Durch die hnlichkeit von Dreiecken ergibt sich mit der Liste, dass

kyon.

Mit dem Gravitationsgesetz von Newton, mit list=9238, ist:

equation=9238



Es ist m glich, mit der Definition der Kraft, mit list=10975:

equation=10975

Und dem Radius zum Quadrat:

$r^2=d^2+R^2-2dR\cos\theta$



Die Beschleunigung zu berechnen, indem man den Radius in die Kraft einsetzt und die Beschleunigung ausdr ckt. Das ergibt mit list die Beschleunigung:

kyon

Mit list=11643 ist die Beziehung zwischen der Variation der Beschleunigung und der Beschleunigung:

equation=11643



Und da der Ausdruck f r die Beschleunigung mit list=11644 ist:

equation=11644

Folgt:

$\Delta a_{cy} = GM\displaystyle\frac{R\sin\theta}{(d^2 + R^2 - 2dR\cos\theta)^{3/2}}\sim \displaystyle\frac{GM}{d^2}\displaystyle\frac{R\sin\theta}{d}$



Daher k nnen wir in der N herung d\gg R mit der Liste approximieren:

kyon

Um die Variation der Beschleunigung parallel zum Radius zu bestimmen, k nnen wir die hnlichkeit von Dreiecken verwenden, um die Beziehung

$\displaystyle\frac{\Delta a_{cx}}{a_c}$



mit der L nge

$d+R\cos\theta$



und der Hypotenuse

$\sqrt{d^2+R^2-2dR\cos\theta}$



auszugleichen.

Durch die hnlichkeit von Dreiecken ergibt sich mit der Liste, dass

kyon

Mit list=11647 ist die Beziehung:

equation=11647



Und wie f r list=11644,

equation=11644

Somit haben wir:

$\Delta a_{cx} =GM\displaystyle\frac{d - R\cos\theta}{(d^2 + R^2 - 2dR\cos\theta)^{3/2}}\sim \displaystyle\frac{GM}{d^2}\left(1+\displaystyle\frac{2R\cos\theta}{d}\right)$



Daher k nnen wir in der N herung d\gg R mit der Liste approximieren:

kyon


>Modell

ID:(1523, 0)



Mechanismen

Definition


ID:(15439, 0)



Variation der Schwerkraft senkrecht zum Radius in Verbindung

Bild

Es gibt einen Beitrag von der Gravitationsattraktion des Himmelskörpers, der Wasser zum Äquator hin zieht:



Die Hypotenuse des Dreiecks ist mit dem senkrechten Kathetens durch die Gleichung verbunden:

$R\sin\theta$



und mit dem horizontalen Katheten durch:

$d - R\cos\theta$



Nach dem Satz des Pythagoras ist die Summe der Quadrate der Katheten gleich dem Quadrat der Hypotenuse, daher ergibt sich:

$R^2\sin^2\theta+(d-R\cos\theta)^2=d^2+R^2-2Rd\cos\theta$

ID:(11635, 0)



Variation der Schwerkraft parallel zum Radius in Verbindung

Notiz

Es gibt einen Beitrag von der Gravitationsattraktion des Himmelskörpers, der das Wasser zum Radius hin zieht, was dazu neigt, das Wasser in Richtung des Äquators zu verschieben:



Die Hypotenuse des Dreiecks wird durch das senkrechte Bein gebildet:

$R\sin\theta$



und das horizontale Bein:

$d - R\cos\theta$



Gemäß dem Satz des Pythagoras haben wir:

$R^2\sin^2\theta+(d-R\cos\theta)^2=d^2+R^2-2Rd\cos\theta$

ID:(11658, 0)



Modell

Zitat


ID:(15434, 0)