Ecuación de Transferencia Radiativa

Storyboard

El transporte de fotones por materia (incluido tejido biologico) puede ser modelado mediante la ecuación de transporte radiativo (Radiative transfer equation - RTE).

>Model

ID:(1033, 0)



Geometrias

Definition

![cell002](showImage.php)

cell002

ID:(8562, 0)



Proyección de D3 a D2

Image

![cell003](showImage.php)

cell003

ID:(8563, 0)



Definición de Bordes en D2Q7

Note

![cell004](showImage.php)

cell004

ID:(8564, 0)



Ecuación de Transferencia Radiativa

Storyboard

El transporte de fotones por materia (incluido tejido biologico) puede ser modelado mediante la ecuación de transporte radiativo (Radiative transfer equation - RTE).

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

![cell002](showImage.php)

cell002

The spectral radiance L_{\Omega,
u}
is the energy per area of the photons of frequency
u
emitted at a solid angle d\Omega.

If the spectral radiance is integrated in the frequency, the total radiance is obtained:

equation

![cell003](showImage.php)

cell003

The integration of the radiance L on the solid angle d\Omega gives us the radiative flux \Phi

equation

![cell004](showImage.php)

cell004

Radiance is the derivative of radiative flux at the angle and projected surface section S\cos\theta

equation

The radiative flux is the radiative energy that by time is irradiated:

equation

The radiative intensity is the radiative flux per element of solid angle:

equation

The photon transport equation is

equation

where \mu_t is the absorption coefficient and scattering, c the velocity of light, P(\hat{n}',\hat{n}) is the phase function that gives the probability that a photon traveling in the direction \hat{n} is deflected in the direction \hat{n}'.


>Model

ID:(1033, 0)