Processing math: 100%
Usuario: No hay usuarios registrado.


Limite continuo

Storyboard

En base a las distintas propiedades que se pueden calcular con las distribuciones de velocidades se pueden también establecer ecuaciones diferenciales continuas que equivalen a las conocidads ecuación de continuidad, Navier Stokes y transporte de calor.

>Modelo

ID:(1222, 0)



Limite continuo

Modelo

En base a las distintas propiedades que se pueden calcular con las distribuciones de velocidades se pueden también establecer ecuaciones diferenciales continuas que equivalen a las conocidads ecuación de continuidad, Navier Stokes y transporte de calor.

Variables

Símbolo
Texto
Variable
Valor
Unidades
Calcule
Valor MKS
Unidades MKS

Cálculos


Primero, seleccione la ecuación:   a ,  luego, seleccione la variable:   a 
\displaystyle\frac{\partial f}{\partial t}+\displaystyle\sum_iv_i\displaystyle\frac{\partial f}{\partial x_i}+\displaystyle\sum_ia_i\displaystyle\frac{\partial f}{\partial v_i}=\displaystyle\frac{df}{dt}\mid_cm\displaystyle\frac{\partial}{\partial t}\displaystyle\int d^3vf+m\displaystyle\sum_i\displaystyle\frac{\partial}{\partial x_i}\displaystyle\int d^3v v_if+m\displaystyle\sum_i\displaystyle\int d^3v a_i\displaystyle\frac{\partial f}{\partial v_i}=m\displaystyle\int d^3v \displaystyle\frac{df}{dt}\mid_cm\displaystyle\frac{\partial}{\partial t}\displaystyle\int d^3v f=\displaystyle\frac{\partial\rho}{\partial t}m\displaystyle\sum_i\displaystyle\frac{\partial}{\partial x_i}\displaystyle\int d^3v v_if=\displaystyle\sum_i\displaystyle\frac{\partial}{\partial x_i}(\rho u_i)=\vec{\nabla}\cdot(\rho\vec{u})m\displaystyle\int d^3v \displaystyle\sum_ia_i\displaystyle\frac{\partial f}{\partial v_i}=0m\displaystyle\int d^3v \displaystyle\frac{df}{dt}\mid_c=0\displaystyle\frac{\partial\rho}{\partial t}+\vec{\nabla}\cdot(\rho\vec{u})=0m\displaystyle\frac{\partial}{\partial t}\displaystyle\int d^3v v_jf+m\displaystyle\sum_i \displaystyle\frac{\partial}{\partial x_i}\displaystyle\int d^3v v_jv_if+m\displaystyle\sum_i\displaystyle\int d^3v v_ja_i\displaystyle\frac{\partial f}{\partial v_i}=m\displaystyle\int d^3v v_j\displaystyle\frac{df}{dt}\mid_cm\displaystyle\frac{\partial}{\partial t}\displaystyle\int d^3v v_jf=\displaystyle\frac{\partial}{\partial t}(\rho u_j)\rho\langle v_jv_i\rangle\equiv m\displaystyle\int d^3v v_jv_ifm\displaystyle\int d^3v \displaystyle\sum_i v_ja_i\displaystyle\frac{\partial f}{\partial v_i}=-\rho a_j\vec{w}=\vec{v}-\vec{u}\langle\vec{w}\rangle=\langle\vec{v}\rangle-\langle\vec{u}\rangle=\langle\vec{v}\rangle-\vec{u}=0m\displaystyle\int d^3v v_jv_if=\rho\langle v_jv_i\rangle=\rho u_ju_i + \rho\langle w_jw_i\ranglem\displaystyle\int d^3v v_j\displaystyle\frac{df}{dt}\mid_c=0\displaystyle\frac{\partial}{\partial t}(\rho u_j)+\displaystyle\sum_i\displaystyle\frac{\partial}{\partial x_i}(\rho u_ju_i + \rho\langle w_jw_i\rangle)-\rho a_j=0\rho\displaystyle\frac{\partial}{\partial t}\vec{u}+\vec{u}\cdot\nabla\vec{u}+\displaystyle\sum_i\displaystyle\frac{\partial}{\partial x_i}(\rho\langle w_jw_i\rangle)=\rho\vec{a}p=\displaystyle\frac{1}{3}\rho\displaystyle\sum_i\langle w_i^2\rangle\pi_{ij}=p\delta_{ij}-\rho\langle w_iw_j\rangle\rho\displaystyle\frac{\partial}{\partial t}\vec{u}+\vec{u}\cdot\nabla\vec{u}+\vec{\nabla} p-\displaystyle\sum_i\displaystyle\frac{\partial}{\partial x_i}\pi_{ij}=\rho\vec{a}\displaystyle\frac{\partial}{\partial t}\displaystyle\int d^3v \displaystyle\frac{1}{2}mv^2f+\displaystyle\sum_i \displaystyle\frac{\partial}{\partial x_i}\displaystyle\int d^3v \displaystyle\frac{1}{2}mv^2v_if+\displaystyle\sum_i\displaystyle\int d^3v \displaystyle\frac{1}{2}mv^2a_i\displaystyle\frac{\partial f}{\partial v_i}=\displaystyle\int d^3v \displaystyle\frac{1}{2}mv^2\displaystyle\frac{df}{dt}\mid_c\epsilon=\displaystyle\frac{1}{2}\langle\vec{w}\cdot\vec{w}\rangle\vec{F}=\displaystyle\frac{1}{2}\langle\vec{w}(\vec{w}\cdot\vec{w})\rangle\Psi=\displaystyle\sum_{i,j}\pi_{ij}\displaystyle\frac{\partial u_i}{\partial x_j}\rho\displaystyle\frac{\partial\epsilon}{\partial t}+\rho\vec{u}\cdot\vec{\nabla}\epsilon=-p\vec{\nabla}\cdot\vec{u}-\vec{\nabla}\cdot\vec{F}+\Psi

Símbolo
Ecuación
Resuelto
Traducido

Cálculos

Símbolo
Ecuación
Resuelto
Traducido

 Variable   Dado   Calcule   Objetivo :   Ecuación   A utilizar
\displaystyle\frac{\partial f}{\partial t}+\displaystyle\sum_iv_i\displaystyle\frac{\partial f}{\partial x_i}+\displaystyle\sum_ia_i\displaystyle\frac{\partial f}{\partial v_i}=\displaystyle\frac{df}{dt}\mid_cm\displaystyle\frac{\partial}{\partial t}\displaystyle\int d^3vf+m\displaystyle\sum_i\displaystyle\frac{\partial}{\partial x_i}\displaystyle\int d^3v v_if+m\displaystyle\sum_i\displaystyle\int d^3v a_i\displaystyle\frac{\partial f}{\partial v_i}=m\displaystyle\int d^3v \displaystyle\frac{df}{dt}\mid_cm\displaystyle\frac{\partial}{\partial t}\displaystyle\int d^3v f=\displaystyle\frac{\partial\rho}{\partial t}m\displaystyle\sum_i\displaystyle\frac{\partial}{\partial x_i}\displaystyle\int d^3v v_if=\displaystyle\sum_i\displaystyle\frac{\partial}{\partial x_i}(\rho u_i)=\vec{\nabla}\cdot(\rho\vec{u})m\displaystyle\int d^3v \displaystyle\sum_ia_i\displaystyle\frac{\partial f}{\partial v_i}=0m\displaystyle\int d^3v \displaystyle\frac{df}{dt}\mid_c=0\displaystyle\frac{\partial\rho}{\partial t}+\vec{\nabla}\cdot(\rho\vec{u})=0m\displaystyle\frac{\partial}{\partial t}\displaystyle\int d^3v v_jf+m\displaystyle\sum_i \displaystyle\frac{\partial}{\partial x_i}\displaystyle\int d^3v v_jv_if+m\displaystyle\sum_i\displaystyle\int d^3v v_ja_i\displaystyle\frac{\partial f}{\partial v_i}=m\displaystyle\int d^3v v_j\displaystyle\frac{df}{dt}\mid_cm\displaystyle\frac{\partial}{\partial t}\displaystyle\int d^3v v_jf=\displaystyle\frac{\partial}{\partial t}(\rho u_j)\rho\langle v_jv_i\rangle\equiv m\displaystyle\int d^3v v_jv_ifm\displaystyle\int d^3v \displaystyle\sum_i v_ja_i\displaystyle\frac{\partial f}{\partial v_i}=-\rho a_j\vec{w}=\vec{v}-\vec{u}\langle\vec{w}\rangle=\langle\vec{v}\rangle-\langle\vec{u}\rangle=\langle\vec{v}\rangle-\vec{u}=0m\displaystyle\int d^3v v_jv_if=\rho\langle v_jv_i\rangle=\rho u_ju_i + \rho\langle w_jw_i\ranglem\displaystyle\int d^3v v_j\displaystyle\frac{df}{dt}\mid_c=0\displaystyle\frac{\partial}{\partial t}(\rho u_j)+\displaystyle\sum_i\displaystyle\frac{\partial}{\partial x_i}(\rho u_ju_i + \rho\langle w_jw_i\rangle)-\rho a_j=0\rho\displaystyle\frac{\partial}{\partial t}\vec{u}+\vec{u}\cdot\nabla\vec{u}+\displaystyle\sum_i\displaystyle\frac{\partial}{\partial x_i}(\rho\langle w_jw_i\rangle)=\rho\vec{a}p=\displaystyle\frac{1}{3}\rho\displaystyle\sum_i\langle w_i^2\rangle\pi_{ij}=p\delta_{ij}-\rho\langle w_iw_j\rangle\rho\displaystyle\frac{\partial}{\partial t}\vec{u}+\vec{u}\cdot\nabla\vec{u}+\vec{\nabla} p-\displaystyle\sum_i\displaystyle\frac{\partial}{\partial x_i}\pi_{ij}=\rho\vec{a}\displaystyle\frac{\partial}{\partial t}\displaystyle\int d^3v \displaystyle\frac{1}{2}mv^2f+\displaystyle\sum_i \displaystyle\frac{\partial}{\partial x_i}\displaystyle\int d^3v \displaystyle\frac{1}{2}mv^2v_if+\displaystyle\sum_i\displaystyle\int d^3v \displaystyle\frac{1}{2}mv^2a_i\displaystyle\frac{\partial f}{\partial v_i}=\displaystyle\int d^3v \displaystyle\frac{1}{2}mv^2\displaystyle\frac{df}{dt}\mid_c\epsilon=\displaystyle\frac{1}{2}\langle\vec{w}\cdot\vec{w}\rangle\vec{F}=\displaystyle\frac{1}{2}\langle\vec{w}(\vec{w}\cdot\vec{w})\rangle\Psi=\displaystyle\sum_{i,j}\pi_{ij}\displaystyle\frac{\partial u_i}{\partial x_j}\rho\displaystyle\frac{\partial\epsilon}{\partial t}+\rho\vec{u}\cdot\vec{\nabla}\epsilon=-p\vec{\nabla}\cdot\vec{u}-\vec{\nabla}\cdot\vec{F}+\Psi



Ecuaciones


Ejemplos


ID:(1222, 0)