Draht
Storyboard 
Die Geometrie, die als Draht bezeichnet wird, kann als ein Zylinder von unendlicher Länge verstanden werden, bei dem der Abstand zur Achse viel größer ist als der Radius des Zylinders. Im Wesentlichen entspricht dies einem Fall, bei dem der Radius gegen Null geht und somit zu einer unendlich dünnen Ladungslinie wird.
ID:(2073, 0)
Draht
Storyboard 
Die Geometrie, die als Draht bezeichnet wird, kann als ein Zylinder von unendlicher Länge verstanden werden, bei dem der Abstand zur Achse viel größer ist als der Radius des Zylinders. Im Wesentlichen entspricht dies einem Fall, bei dem der Radius gegen Null geht und somit zu einer unendlich dünnen Ladungslinie wird.
Variablen
Berechnungen
Berechnungen
Gleichungen
Im Fall einer sph rischen Gau 'schen Oberfl che ist der Elektrisches Feld ($\vec{E}$) in Richtung von der Versor normal zum Abschnitt ($\hat{n}$) konstant. Daher kann es unter Verwendung von die Ladung ($Q$), die Elektrische Feldkonstante ($\epsilon_0$) und die Dielektrizitätskonstante ($\epsilon$) durch Integration ber die Oberfläche, wo das elektrische Feld konstant ($dS$) berechnet werden:
Mit die Oberfläche ($S$) f r einen Zylinder von die Achsabstand ($r$) und der Leitungslänge ($L$):
und die Lineare Ladungsdichte ($\lambda$), berechnet mit die Ladung ($Q$):
Damit,
Im Fall einer sph rischen Gau 'schen Oberfl che ist der Elektrisches Feld ($\vec{E}$) in Richtung von der Versor normal zum Abschnitt ($\hat{n}$) konstant. Daher kann es unter Verwendung von die Ladung ($Q$), die Elektrische Feldkonstante ($\epsilon_0$) und die Dielektrizitätskonstante ($\epsilon$) durch Integration ber die Oberfläche, wo das elektrische Feld konstant ($dS$) berechnet werden:
Mit die Oberfläche ($S$) f r einen Zylinder von die Achsabstand ($r$) und der Leitungslänge ($L$):
und die Lineare Ladungsdichte ($\lambda$), berechnet mit die Ladung ($Q$):
Damit,
Der Elektrisches Potenzial, unendlicher Draht ($\varphi_w$) wird durch die radiale Integration von das Elektrisches Feld eines unendlichen Drahtes ($E_w$) von der Referenzradius ($r_0$) bis die Achsabstand ($r$) berechnet, was zu folgender Gleichung f hrt:
Des Weiteren ist der Wert von das Elektrisches Feld eines unendlichen Drahtes ($E_w$) f r die Variablen die Ladung ($Q$), die Dielektrizitätskonstante ($\epsilon$) und die Elektrische Feldkonstante ($\epsilon_0$) durch die folgende Gleichung gegeben:
Dies impliziert, dass durch die Durchf hrung der Integration
$\varphi_w = -\displaystyle\int_{r_0}^r du \displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon u }= -\displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon } \ln\left(\displaystyle\frac{ r }{ r_0 }\right)$
die folgende Gleichung erhalten wird:
Der Elektrisches Potenzial, unendlicher Draht ($\varphi_w$) wird durch die radiale Integration von das Elektrisches Feld eines unendlichen Drahtes ($E_w$) von der Referenzradius ($r_0$) bis die Achsabstand ($r$) berechnet, was zu folgender Gleichung f hrt:
Des Weiteren ist der Wert von das Elektrisches Feld eines unendlichen Drahtes ($E_w$) f r die Variablen die Ladung ($Q$), die Dielektrizitätskonstante ($\epsilon$) und die Elektrische Feldkonstante ($\epsilon_0$) durch die folgende Gleichung gegeben:
Dies impliziert, dass durch die Durchf hrung der Integration
$\varphi_w = -\displaystyle\int_{r_0}^r du \displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon u }= -\displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon } \ln\left(\displaystyle\frac{ r }{ r_0 }\right)$
die folgende Gleichung erhalten wird:
Beispiele
Im Fall einer sph rischen Gau 'schen Oberfl che ist der Elektrisches Feld ($\vec{E}$) in Richtung von der Versor normal zum Abschnitt ($\hat{n}$) konstant. Daher kann es unter Verwendung von die Ladung ($Q$), die Elektrische Feldkonstante ($\epsilon_0$) und die Dielektrizitätskonstante ($\epsilon$) durch Integration ber die Oberfläche, wo das elektrische Feld konstant ($dS$) berechnet werden:
Mit die Oberfläche ($S$) f r einen Zylinder von die Achsabstand ($r$) und der Leitungslänge ($L$):
was in der Grafik dargestellt ist
und die Lineare Ladungsdichte ($\lambda$), berechnet mit die Ladung ($Q$):
Damit,
Der Elektrisches Potenzial, unendlicher Draht ($\varphi_w$) wird durch die radiale Integration von das Elektrisches Feld eines unendlichen Drahtes ($E_w$) von der Referenzradius ($r_0$) bis die Achsabstand ($r$) berechnet, was zu folgender Gleichung f hrt:
Des Weiteren ist der Wert von das Elektrisches Feld eines unendlichen Drahtes ($E_w$) f r die Variablen die Ladung ($Q$), die Dielektrizitätskonstante ($\epsilon$) und die Elektrische Feldkonstante ($\epsilon_0$) durch die folgende Gleichung gegeben:
Dies impliziert, dass durch die Durchf hrung der Integration
$\varphi_w = -\displaystyle\int_{r_0}^r du \displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon u }= -\displaystyle\frac{ \lambda }{ 2 \pi \epsilon_0 \epsilon } \ln\left(\displaystyle\frac{ r }{ r_0 }\right)$
die folgende Gleichung erhalten wird:
Wie in der folgenden Grafik dargestellt:
muss das Feld an zwei Punkten die gleiche Energie aufweisen. Daher m ssen die Variablen die Ladung ($Q$), die Partikelmasse ($m$), die Geschwindigkeit 1 ($v_1$), die Geschwindigkeit 2 ($v_2$) und der Elektrisches Potential 1 ($\varphi_1$) gem der Gleichung:
und der Elektrisches Potential 2 ($\varphi_2$) gem der Gleichung:
die folgende Beziehung erf llen:
Das Elektrisches Feld eines unendlichen Drahtes ($E_w$) ist eine Funktion von die Lineare Ladungsdichte ($\lambda$), die Achsabstand ($r$), die Dielektrizitätskonstante ($\epsilon$) und die Elektrische Feldkonstante ($\epsilon_0$) und wird berechnet durch:
Die Lineare Ladungsdichte ($\lambda$) wird berechnet als die Ladung ($Q$) dividiert durch der Leitungslänge ($L$):
Das Elektrisches Feld eines unendlichen Drahtes ($E_w$) ist eine Funktion von die Lineare Ladungsdichte ($\lambda$), die Achsabstand ($r$), die Dielektrizitätskonstante ($\epsilon$) und die Elektrische Feldkonstante ($\epsilon_0$) und wird berechnet durch:
Der Elektrisches Potenzial, unendlicher Draht ($\varphi_w$) ist mit der Pi ($\pi$), die Elektrische Feldkonstante ($\epsilon_0$), die Dielektrizitätskonstante ($\epsilon$), die Lineare Ladungsdichte ($\lambda$), die Achsabstand ($r$) und der Referenzradius ($r_0$) ist gleich:
Der Elektrisches Potenzial, unendlicher Draht ($\varphi_w$) ist mit der Pi ($\pi$), die Elektrische Feldkonstante ($\epsilon_0$), die Dielektrizitätskonstante ($\epsilon$), die Lineare Ladungsdichte ($\lambda$), die Achsabstand ($r$) und der Referenzradius ($r_0$) ist gleich:
Elektrische Potentiale, die die potenzielle Energie pro Ladungseinheit darstellen, beeinflussen, wie sich die Geschwindigkeit eines Teilchens ndert. Daher folgt aus der Energieerhaltung zwischen zwei Punkten, dass in Anwesenheit der Variablen die Ladung ($q$), die Partikelmasse ($m$), die Geschwindigkeit 1 ($v_1$), die Geschwindigkeit 2 ($v_2$), der Elektrisches Potential 1 ($\varphi_1$) und der Elektrisches Potential 2 ($\varphi_2$) die folgende Beziehung erf llt sein muss:
ID:(2073, 0)
