Innenraum einer isolierenden Kugel
Storyboard 
Im Fall einer isolierenden Kugel mit homogener Ladungsverteilung können sich die Ladungen nicht bewegen. Das elektrische Feld kann berechnet werden, indem man eine sphärische Symmetrie annimmt und die Gaußsche Fläche als Kugel mit einem gegebenen Radius definiert. Auf diese Weise hängen das elektrische Feld und das Potential von der durch diese Fläche eingeschlossenen Ladung ab.
ID:(2077, 0)
Innenraum einer isolierenden Kugel
Storyboard 
Im Fall einer isolierenden Kugel mit homogener Ladungsverteilung können sich die Ladungen nicht bewegen. Das elektrische Feld kann berechnet werden, indem man eine sphärische Symmetrie annimmt und die Gaußsche Fläche als Kugel mit einem gegebenen Radius definiert. Auf diese Weise hängen das elektrische Feld und das Potential von der durch diese Fläche eingeschlossenen Ladung ab.
Variablen
Berechnungen
Berechnungen
Gleichungen
F r den Fall einer kugelf rmigen Gau -Oberfl che ist das elektrische Feld konstant. Daher ist der Elektrisches Feld ($E$) gleich die Ladung ($Q$), die Elektrische Feldkonstante ($\epsilon_0$), die Dielektrizitätskonstante ($\epsilon$) und die Oberfläche der Leiters ($S$) gem :
Da die Oberfl che von die Oberfläche einer Kugel ($S$) gleich der Pi ($\pi$) und der Scheibenradius ($r$) ist, haben wir:
Die in der Gau -Oberfl che eingeschlossene Ladung, mit die Eingekapselte Ladung auf der Gauß-Oberfläche ($q$), der Kugelradius ($R$) und die Entfernung zwischen Ladungen ($r$), ergibt:
Daher ergibt sich der Elektrisches Feld, Kugel, Innenraum ($E_i$) als:
F r den Fall einer kugelf rmigen Gau -Oberfl che ist das elektrische Feld konstant. Daher ist der Elektrisches Feld ($E$) gleich die Ladung ($Q$), die Elektrische Feldkonstante ($\epsilon_0$), die Dielektrizitätskonstante ($\epsilon$) und die Oberfläche der Leiters ($S$) gem :
Da die Oberfl che von die Oberfläche einer Kugel ($S$) gleich der Pi ($\pi$) und der Scheibenradius ($r$) ist, haben wir:
Die in der Gau -Oberfl che eingeschlossene Ladung, mit die Eingekapselte Ladung auf der Gauß-Oberfläche ($q$), der Kugelradius ($R$) und die Entfernung zwischen Ladungen ($r$), ergibt:
Daher ergibt sich der Elektrisches Feld, Kugel, Innenraum ($E_i$) als:
Da der Potentialunterschied der Elektrisches Potential, isolierende Kugel, innen ($\varphi_i$) mit der Elektrisches Feld, Kugel, Innenraum ($E_i$) und der Radius ($r$) ist, ergibt sich:
Da der Elektrisches Feld, Kugel, Innenraum ($E_i$) mit der Pi ($\pi$), die Ladung ($Q$), die Elektrische Feldkonstante ($\epsilon_0$), die Dielektrizitätskonstante ($\epsilon$), der Kugelradius ($R$) und die Entfernung zwischen Ladungen ($r$) gleich ist:
In sph rischen Koordinaten haben wir:
$\varphi_i = -\displaystyle\int_0^{r} du \displaystyle\frac{ Q u }{4 \pi \epsilon_0 \epsilon R ^3 }= -\displaystyle\frac{ Q }{ 8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r ^2 }{ R ^3 }$
Daher ergibt sich der Elektrisches Potential, isolierende Kugel, innen ($\varphi_i$) mit die Entfernung zwischen Ladungen ($r$) in:
Da der Potentialunterschied der Elektrisches Potential, isolierende Kugel, innen ($\varphi_i$) mit der Elektrisches Feld, Kugel, Innenraum ($E_i$) und der Radius ($r$) ist, ergibt sich:
Da der Elektrisches Feld, Kugel, Innenraum ($E_i$) mit der Pi ($\pi$), die Ladung ($Q$), die Elektrische Feldkonstante ($\epsilon_0$), die Dielektrizitätskonstante ($\epsilon$), der Kugelradius ($R$) und die Entfernung zwischen Ladungen ($r$) gleich ist:
In sph rischen Koordinaten haben wir:
$\varphi_i = -\displaystyle\int_0^{r} du \displaystyle\frac{ Q u }{4 \pi \epsilon_0 \epsilon R ^3 }= -\displaystyle\frac{ Q }{ 8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r ^2 }{ R ^3 }$
Daher ergibt sich der Elektrisches Potential, isolierende Kugel, innen ($\varphi_i$) mit die Entfernung zwischen Ladungen ($r$) in:
Beispiele
Im Fall einer sph rischen Gau 'schen Oberfl che ist der Elektrisches Feld ($\vec{E}$) in Richtung von der Versor normal zum Abschnitt ($\hat{n}$) konstant. Daher kann es unter Verwendung von die Ladung ($Q$), die Elektrische Feldkonstante ($\epsilon_0$) und die Dielektrizitätskonstante ($\epsilon$) durch Integration ber die Oberfläche, wo das elektrische Feld konstant ($dS$) berechnet werden:
Da die Oberfl che von die Oberfläche einer Kugel ($S$) gleich der Pi ($\pi$) und der Scheibenradius ($r$) ist, haben wir:
was in der Grafik dargestellt ist
die Eingekapselte Ladung auf der Gauß-Oberfläche ($q$) mit einem Radius gleich die Entfernung zwischen Ladungen ($r$) und der Kugelradius ($R$) mit die Ladung ($Q$), so dass:
F r der Elektrisches Feld, Kugel, Innenraum ($E_i$) ergibt sich die folgende Gleichung:
Da der Potentialunterschied der Elektrisches Potential, isolierende Kugel, innen ($\varphi_i$) mit der Elektrisches Feld, Kugel, Innenraum ($E_i$) und der Radius ($r$) ist, ergibt sich:
Da der Elektrisches Feld, Kugel, Innenraum ($E_i$) mit der Pi ($\pi$), die Ladung ($Q$), die Elektrische Feldkonstante ($\epsilon_0$), die Dielektrizitätskonstante ($\epsilon$), der Kugelradius ($R$) und die Entfernung zwischen Ladungen ($r$) gleich ist:
In sph rischen Koordinaten haben wir:
$\varphi_i = -\displaystyle\int_0^{r} du \displaystyle\frac{ Q u }{4 \pi \epsilon_0 \epsilon R ^3 }= -\displaystyle\frac{ Q }{ 8 \pi \epsilon_0 \epsilon }\displaystyle\frac{ r ^2 }{ R ^3 }$
Daher ergibt sich der Elektrisches Potential, isolierende Kugel, innen ($\varphi_i$) mit die Entfernung zwischen Ladungen ($r$) in:
Wie in der folgenden Grafik dargestellt:
muss das Feld an zwei Punkten die gleiche Energie aufweisen. Daher m ssen die Variablen die Ladung ($Q$), die Partikelmasse ($m$), die Geschwindigkeit 1 ($v_1$), die Geschwindigkeit 2 ($v_2$) und der Elektrisches Potential 1 ($\varphi_1$) gem der Gleichung:
und der Elektrisches Potential 2 ($\varphi_2$) gem der Gleichung:
die folgende Beziehung erf llen:
Im Fall einer der Kugelradius ($R$) Kugel mit homogener Ladung umfasst die Gau sche Oberfl che f r die Entfernung zwischen Ladungen ($r$) Die Eingekapselte Ladung auf der Gauß-Oberfläche ($q$) f r die Ladung ($Q$):
Der Elektrisches Feld, Kugel, Innenraum ($E_i$) ist mit der Pi ($\pi$), die Ladung ($Q$), die Elektrische Feldkonstante ($\epsilon_0$), die Dielektrizitätskonstante ($\epsilon$), der Kugelradius ($R$) und die Entfernung zwischen Ladungen ($r$) ist gleich:
Im Fall einer der Kugelradius ($R$) Kugel mit homogener Ladung umfasst die Gau sche Oberfl che f r die Entfernung zwischen Ladungen ($r$) Die Eingekapselte Ladung auf der Gauß-Oberfläche ($q$) f r die Ladung ($Q$):
Der Elektrisches Feld, Kugel, Innenraum ($E_i$) ist mit der Pi ($\pi$), die Ladung ($Q$), die Elektrische Feldkonstante ($\epsilon_0$), die Dielektrizitätskonstante ($\epsilon$), der Kugelradius ($R$) und die Entfernung zwischen Ladungen ($r$) ist gleich:
Der Elektrisches Potential, isolierende Kugel, innen ($\varphi_i$) ist mit der Pi ($\pi$), die Ladung ($Q$), die Elektrische Feldkonstante ($\epsilon_0$), die Dielektrizitätskonstante ($\epsilon$), die Entfernung zwischen Ladungen ($r$) und der Kugelradius ($R$) ist gleich:
Der Elektrisches Potential, isolierende Kugel, innen ($\varphi_i$) ist mit der Pi ($\pi$), die Ladung ($Q$), die Elektrische Feldkonstante ($\epsilon_0$), die Dielektrizitätskonstante ($\epsilon$), die Entfernung zwischen Ladungen ($r$) und der Kugelradius ($R$) ist gleich:
Elektrische Potentiale, die die potenzielle Energie pro Ladungseinheit darstellen, beeinflussen, wie sich die Geschwindigkeit eines Teilchens ndert. Daher folgt aus der Energieerhaltung zwischen zwei Punkten, dass in Anwesenheit der Variablen die Ladung ($q$), die Partikelmasse ($m$), die Geschwindigkeit 1 ($v_1$), die Geschwindigkeit 2 ($v_2$), der Elektrisches Potential 1 ($\varphi_1$) und der Elektrisches Potential 2 ($\varphi_2$) die folgende Beziehung erf llt sein muss:
ID:(2077, 0)
