Guía de Ondas

Storyboard

>Model

ID:(478, 0)



Alternating Fields

Definition

ID:(853, 0)



Bunches Building

Image

ID:(854, 0)



Example LINAC

Note

ID:(248, 0)



Graphic Long Cavity

Quote

ID:(855, 0)



Photon Generation

Equation

ID:(246, 0)



radiotherapy004

Script

![radiotherapy004](showImage.php)

radiotherapy004

ID:(3048, 0)



radiotherapy005

Variable

![radiotherapy005](showImage.php)

radiotherapy005

ID:(3049, 0)



radiotherapy006

Audio

![radiotherapy006](showImage.php)

radiotherapy006

ID:(3050, 0)



radiotherapy007

Video

![radiotherapy007](showImage.php)

radiotherapy007

ID:(3051, 0)



radiotherapy008

Unit

![radiotherapy008](showImage.php)

radiotherapy008

ID:(3052, 0)



radiotherapy009

Code

![radiotherapy009](showImage.php)

radiotherapy009

ID:(3053, 0)



radiotherapy012

Flux

![radiotherapy012](showImage.php)

radiotherapy012

ID:(3056, 0)



radiotherapy014

Matrix

![radiotherapy014](showImage.php)

radiotherapy014

ID:(3058, 0)



The Klystor

Html

ID:(856, 0)



Waveguides

Php

ID:(245, 0)



Work Function

Iframe

ID:(850, 0)



Guía de Ondas

Storyboard

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$T_e$
T_e
Angle Transit
-
$E_{n-1}$
E_n1
Electron Energy in $n-1$-th Cavity
J
$E_0$
E_0
Energía de electrón al ingreso a la guía de ondas
J
$E_n$
E_n
Energy Electron in $n$-th cavity
J
$d$
d
Klystor Distance between Bancher and Catcher
m
$l_n$
l_n
Long $n$-th Cavity
m
$n$
n
Number of Cavity in Waveguide
-
$\nu$
nu
Oscillation Frequency Waveguide
Hz
$T_c$
T_c
Oscillation Period Waveguide
s
$V$
V
Potential in Waveguide
V
$\beta_e$
beta_e
Propagation Factor
1/m
$v_n$
v_n
Speed Electron in $n$-th Cavity
m/s
$c$
c
Speed of Light
m/s

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

$T_e=\displaystyle\frac{\sin\beta_ed}{\beta_ed}$

$l_n=\displaystyle\frac{c}{2

u}\sqrt{\displaystyle\frac{E_n(E_n+2m_ec^2)}{(E_n+m_ec^2)^2}}$

$E_n=\displaystyle\frac{m_ec^2}{\sqrt{1-\displaystyle\frac{v_n^2}{c^2}}}-m_ec^2$

$v_n=c\sqrt{\displaystyle\frac{E_n(E_n+2m_ec^2)}{(E_n+m_ec^2)^2}}$

$l_n=\displaystyle\frac{v_n}{2

u}$

$T_c=\displaystyle\frac{1}{

u}$

$\beta_e=\displaystyle\frac{2\pi

u}{v}$

![radiotherapy004](showImage.php)

radiotherapy004

![radiotherapy005](showImage.php)

radiotherapy005

![radiotherapy006](showImage.php)

radiotherapy006

![radiotherapy007](showImage.php)

radiotherapy007

![radiotherapy008](showImage.php)

radiotherapy008

![radiotherapy009](showImage.php)

radiotherapy009

![radiotherapy012](showImage.php)

radiotherapy012

![radiotherapy014](showImage.php)

radiotherapy014


>Model

ID:(478, 0)