Aceleración de Electrones

Storyboard

>Model

ID:(477, 0)



Electron Acceleration

Definition

ID:(244, 0)



Electron Flow

Image

ID:(851, 0)



Example X Ray's

Note

ID:(247, 0)



Saturation Currents

Quote

ID:(852, 0)



radiotherapy001

Exercise

![radiotherapy001](showImage.php)

radiotherapy001

ID:(3045, 0)



radiotherapy002

Equation

![radiotherapy002](showImage.php)

radiotherapy002

ID:(3046, 0)



radiotherapy003

Script

![radiotherapy003](showImage.php)

radiotherapy003

ID:(3047, 0)



radiotherapy010

Variable

![radiotherapy010](showImage.php)

radiotherapy010

ID:(3054, 0)



radiotherapy011

Audio

![radiotherapy011](showImage.php)

radiotherapy011

ID:(3055, 0)



radiotherapy013

Video

![radiotherapy013](showImage.php)

radiotherapy013

ID:(3057, 0)



Aceleración de Electrones

Storyboard

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$T_0$
T_0
Ambient Temperature
K
$E$
E
Anode Output Power
J
$I_f$
I_f
Current in the Filament
A
$j_z$
j_z
Density Electron Flow
A/m^2
$\epsilon$
epsilon
Dielectric constant
-
$d$
d
Distance Filament Anode
m
$\epsilon$
e
Emissivity
-
$u$
u
Exponent Resistivity
-
$r_f$
r_f
Filament Radio
m
$T$
T
Filament Temperature
K
$V$
V
Filament-Anode Potential
V
$\phi$
phi
Job Function
J
$v$
v
Magnitude of Electron Speed
m/s
$h$
h
Planck constant
Js
$\rho_u$
rho_u
Reference Resistivity
Ohm m
$T_u$
T_u
Reference Temperature
K
$R$
R
Reflection Factor
-
$\rho_e(T)$
rho_eT
Resistivity Temperature $T$
Ohm m
$A$
A
Richardson-Dushmann Constant
$j_{max}$
j_max
Saturated Flux Density
A/m^2
$\sigma$
s
Stefan Boltzmann constant
J/m^2K^4s

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

$v=\sqrt{\displaystyle\frac{2eV}{m}}$

$j_z=AT^2(1-\gamma)e^{-\phi/kT}$

$\rho_e(T)=\rho_u\left(\displaystyle\frac{T}{T_u}\right)^u$

$T=\left(\displaystyle\frac{\rho_uI_e^2}{2\epsilon\pi^2\sigma r_f^3T_u^u}\right)^{1/(4-u)}$

$A=\displaystyle\frac{4\pi m_ek^2e}{h^3}$

$j_{max}=-\displaystyle\frac{4\epsilon_0}{9}\sqrt{\displaystyle\frac{2e}{m_e}}\displaystyle\frac{V^{3/2}}{d^2}$

$I_f^2\rho_e(T)\displaystyle\frac{l_f}{\pi r_f^2}=2\pi r_fl_f\epsilon\sigma(T^4-T_0^4)$

![radiotherapy001](showImage.php)

radiotherapy001

![radiotherapy002](showImage.php)

radiotherapy002

![radiotherapy003](showImage.php)

radiotherapy003

![radiotherapy010](showImage.php)

radiotherapy010

![radiotherapy011](showImage.php)

radiotherapy011

![radiotherapy013](showImage.php)

radiotherapy013


>Model

ID:(477, 0)