Usuario:


Deformación plástica

Storyboard

Para pequeñas deformaciones, el material solo sufre una deformación elástica, es decir, al retirar la carga este vuelve a su forma original. Para deformaciones mayores, los átomos pueden sufrir desplazamientos mayores, cambiando la estructura de forma permanente. En estos casos hablamos de deformación plástica.

>Modelo

ID:(324, 0)



Deformación plástica

Storyboard

Para pequeñas deformaciones, el material solo sufre una deformación elástica, es decir, al retirar la carga este vuelve a su forma original. Para deformaciones mayores, los átomos pueden sufrir desplazamientos mayores, cambiando la estructura de forma permanente. En estos casos hablamos de deformación plástica.

Variables

Símbolo
Texto
Variable
Valor
Unidades
Calcule
Valor MKS
Unidades MKS
$u_2$
u_2
Desplazamiento en flexión con dos puntos fijos
m
$u_1$
u_1
Desplazamiento en flexión con un punto fijo
m
$W_2$
W_2
Energía de deformación con dos puntos fijos
J
$W_1$
W_1
Energía de deformación con un punto fijo
J
$W_p$
W_p
Energía de deformación en condición de pandeo
J
$K$
K
Factor de pandeo
-
$F_2$
F_2
Fuerza de deformación con dos puntos fijos
N
$F_1$
F_1
Fuerza de deformación con un punto fijo
N
$F_p$
F_p
Fuerza de deformación en condición de pandeo
N
$L$
L
Largo del cuerpo
m
$E$
E
Módulo de Elasticidad
Pa
$I_s$
I_s
Momento de inercia de superficie
m^4
$R$
R
Radio efectivo
m
$R_2$
R_2
Radio exterior
m
$R_1$
R_1
Radio interior
m
$S$
S
Sección del elemento
m^2
$\sigma_2$
sigma_2
Tensión para deformación con dos puntos fijos
Pa
$\sigma_1$
sigma_1
Tensión para deformación con un punto fijo
Pa
$\sigma_p$
sigma_p
Tensión para deformación en el caso de pandeo
Pa

Cálculos


Primero, seleccione la ecuación:   a ,  luego, seleccione la variable:   a 

Símbolo
Ecuación
Resuelto
Traducido

Cálculos

Símbolo
Ecuación
Resuelto
Traducido

 Variable   Dado   Calcule   Objetivo :   Ecuación   A utilizar



Ecuaciones


Ejemplos


mechanisms

El hueso se puede modelar como un cilindro hueco, ya que el material en su interior no es capaz de soportar una carga significativa. Por lo tanto, se modela geom tricamente como un cilindro con propiedades el largo del cuerpo ($L$), el radio interior ($R_1$) y el radio exterior ($R_2$):

image

Por ello el radio efectivo ($R$) es

equation=7972

la sección del elemento ($S$) es

equation=3784

y el momento de inercia de superficie ($I_s$) es

equation=3774

En el caso del hueso se tiene distintas situaciones que llevan a que se generen tensiones extremas que conducen a la ruptura.

Una situaci n es el caso en que el hueso est fijo en un extremo y es flexionado desde el otro:

image

Un ejemplo es una persona que cae y se apoya en un punto, creando un punto fijo por roce mientras el centro de masa contin a desplaz ndose por inercia, flexionando el hueso hasta el punto en que se fractura.

Otra variante es que est fijo en ambos extremos y reciba una fuerza perpendicular en alguna posici n intermedia:

image

Un ejemplo t pico de esto es cuando un futbolista apoya el pie (un punto fijo) y la masa de su cuerpo, por inercia, retiene el segundo punto que se puede considerar fijo, mientras otro jugador impacta con su pie la pierna del jugador.

Por ltimo, existe la situaci n en que el hueso colapsa por presi n axial.

image

En este caso, existen dos situaciones. Por un lado, puede colapsar la estructura misma del hueso y fracturarse por compresi n. Por el otro lado, puede existir pandeo, es decir, por alguna inhomogeneidad se flexiona el hueso y termina deflej ndose en forma extrema, llevando a la fractura.

Estos son los mecanismos b sicos que luego, en la realidad, pueden iniciar el proceso comprometiendo otros huesos o extendi ndose en el mismo hueso, generando una ruptura m s compleja.

image

Una situaci n que puede ocurrir es que una fuerza de deformación con un punto fijo ($F_1$) act e sobre un hueso de un largo del cuerpo ($L$), el módulo de Elasticidad ($E$) y el momento de inercia de superficie ($I_s$) que est fijo en un extremo.

image

la energía de deformación con un punto fijo ($W_1$), que almacena la estructura ante una tensión para deformación con un punto fijo ($\sigma_1$), es

equation=3777

la fuerza de deformación con un punto fijo ($F_1$), que se aplica, lleva a una tensión para deformación con un punto fijo ($\sigma_1$), seg n

equation=3775

y la tensión para deformación con un punto fijo ($\sigma_1$), que depende de el radio exterior ($R_2$), es

equation=3776

Una situaci n que puede ocurrir es que una fuerza de deformación con dos puntos fijos ($F_2$) act e sobre un hueso con las propiedades un largo del cuerpo ($L$), el módulo de Elasticidad ($E$) y el momento de inercia de superficie ($I_s$), que est fijo en ambos extremos:

image

la energía de deformación con dos puntos fijos ($W_2$), que almacena la estructura frente a un desplazamiento en flexión con dos puntos fijos ($u_2$), es

equation=3780

la fuerza de deformación con dos puntos fijos ($F_2$), que se aplica, lleva a un desplazamiento en flexión con dos puntos fijos ($u_2$), seg n

equation=3778

y la tensión para deformación con dos puntos fijos ($\sigma_2$), que depende de el radio exterior ($R_2$), es

equation=3779

Una situaci n que puede ocurrir es que una fuerza de deformación en condición de pandeo ($F_p$) act e a lo largo del eje del hueso con las propiedades un largo del cuerpo ($L$), el módulo de Elasticidad ($E$), el factor de pandeo ($K$), el radio efectivo ($R$) y el momento de inercia de superficie ($I_s$), generando pandeo:

image

la energía de deformación en condición de pandeo ($W_p$), se define como

equation=3783

la fuerza de deformación en condición de pandeo ($F_p$), la fuerza aplicada, seg n

equation=3781

y la tensión para deformación en el caso de pandeo ($\sigma_p$), que depende de el radio exterior ($R_2$), se expresa como

equation=3782

Una de las formas de generar una fractura es mediante la torsi n del hueso, que implica la aplicaci n de torques opuestos en los extremos:

image

La deformaci n el stica microsc pica corresponde a una modificaci n de la distancia entre los tomos bajo una fuerza externa, sin que ocurra un reordenamiento de estos.

image

En general, es una deformaci n en la que la distancia se modifica de manera proporcional a la fuerza aplicada, y se habla de una deformaci n el stica.

La deformaci n pl stica implica que si se reduce la tensi n aplicada, el material disminuye su deformaci n pero termina con una deformaci n permanente.

image

Por lo tanto, si se somete nuevamente a tensi n, por lo general vuelve a su forma el stica, pero debido a la nueva forma, no puede recuperar su forma original.

Una deformaci n pl stica implica que los tomos se reordenen, disoci ndose de estructuras existentes y formando nuevas uniones que son estables en s mismas. Sin embargo, dicha deformaci n generalmente implica una modificaci n en la forma del medio.

image

La deformaci n pl stica puede finalmente llevar a modificaciones que incluyen rupturas catastr ficas que son permanentes.

Trabajaremos con un hueso y con los escenarios de ca da y de golpe. Los par metros del hueso y de las propiedades del material se resumen aqu :

image

Si un jugador recibe un impacto en la mitad del hueso y se considera que el pie, debido a la fricci n, y el cuerpo, debido a la inercia, son puntos fijos, se genera una carga que flexiona el hueso.

image

Pregunta de inter s: Cu l es la energ a, la tensi n, la fuerza, el desplazamiento y la altura de salto en los que se presentar a el pandeo? ($W_{tv}$, $\sigma_{tv}$, $F_{tv}$, $u_{tv}$, $v$).

Se consideran dos situaciones, la ca da (quiebre por pandeo, compresi n o flexi n) e impacto en la parte central del hueso (quiebre por flexi n).

image


model

La integraci n sobre la secci n con el radio interior ($R_1$) y el radio exterior ($R_2$) conduce a la introducci n de el radio efectivo ($R$), definido por:

kyon

Con el radio exterior ($R_2$) y el radio interior ($R_1$), la sección del elemento ($S$) est definido por

kyon

El momento de inercia de superficie ($I_s$) se calcula en el caso de un cilindro con el radio exterior ($R_2$) y el radio interior ($R_1$) mediante

kyon

La relaci n entre la energía de deformación con dos puntos fijos ($W_2$) y el desplazamiento en flexión con dos puntos fijos ($u_2$) en una flexi n con dos puntos fijos depende de el módulo de Elasticidad ($E$), el largo del cuerpo ($L$), y el momento de inercia de superficie ($I_s$) es

kyon

La relaci n entre la fuerza de deformación con dos puntos fijos ($F_2$) y el desplazamiento en flexión con dos puntos fijos ($u_2$) en una flexi n con dos puntos fijos depende de el módulo de Elasticidad ($E$), el largo del cuerpo ($L$) y el momento de inercia de superficie ($I_s$). En este contexto,

kyon

La relaci n entre la tensión para deformación con dos puntos fijos ($\sigma_2$) y la fuerza de deformación con dos puntos fijos ($F_2$) en una flexi n con dos puntos fijos depende de el radio exterior ($R_2$), el largo del cuerpo ($L$) y el momento de inercia de superficie ($I_s$). En este contexto,

kyon

La relaci n entre la energía de deformación con un punto fijo ($W_1$) y el desplazamiento en flexión con un punto fijo ($u_1$) en una flexi n con un punto fijo depende de el módulo de Elasticidad ($E$), el largo del cuerpo ($L$) y el momento de inercia de superficie ($I_s$) es:

kyon

La relaci n entre la fuerza de deformación con un punto fijo ($F_1$) y el desplazamiento en flexión con un punto fijo ($u_1$) en una flexi n con un punto fijo depende de el módulo de Elasticidad ($E$), el largo del cuerpo ($L$) y el momento de inercia de superficie ($I_s$). En este contexto,

kyon

La relaci n entre la tensión para deformación con un punto fijo ($\sigma_1$) y la fuerza de deformación con un punto fijo ($F_1$) en una flexi n con un punto fijo depende de el radio exterior ($R_2$), el largo del cuerpo ($L$) y el momento de inercia de superficie ($I_s$) es

kyon

La energía de deformación en condición de pandeo ($W_p$) en pandeo depende de el módulo de Elasticidad ($E$), el largo del cuerpo ($L$), el momento de inercia de superficie ($I_s$), el radio efectivo ($R$) y el factor de pandeo ($K$) es

kyon

El valor de el factor de pandeo ($K$) es igual a:

• 0.5 si ambos bordes est n fijos,

• 1.0 si ambos pueden rotar,

• 0.7 si uno est fijo y el otro puede rotar, y

• 2.0 si ambos est n libres.

La fuerza de deformación en condición de pandeo ($F_p$) en pandeo depende de el módulo de Elasticidad ($E$), el largo del cuerpo ($L$), el momento de inercia de superficie ($I_s$) y el factor de pandeo ($K$).

kyon

El valor de el factor de pandeo ($K$) es igual a:

• 0.5 si ambos bordes est n fijos,

• 1.0 si ambos pueden rotar,

• 0.7 si uno est fijo y el otro puede rotar, y

• 2.0 si ambos est n libres.

La tensión para deformación en el caso de pandeo ($\sigma_p$) en pandeo depende de el módulo de Elasticidad ($E$), el largo del cuerpo ($L$), el momento de inercia de superficie ($I_s$), la sección del elemento ($S$) y el factor de pandeo ($K$).

kyon

El valor de el factor de pandeo ($K$) es igual a:

• 0.5 si ambos bordes est n fijos,

• 1.0 si ambos pueden rotar,

• 0.7 si uno est fijo y el otro puede rotar, y

• 2.0 si ambos est n libres.


>Modelo

ID:(324, 0)



Mecanismos

Definición


ID:(15576, 0)



Estructura de hueso

Imagen

El hueso se puede modelar como un cilindro hueco, ya que el material en su interior no es capaz de soportar una carga significativa. Por lo tanto, se modela geométricamente como un cilindro con propiedades el largo del cuerpo ($L$), el radio interior ($R_1$) y el radio exterior ($R_2$):

None



Por ello el radio efectivo ($R$) es



la sección del elemento ($S$) es



y el momento de inercia de superficie ($I_s$) es

ID:(1915, 0)



Aplicación a fracturas

Nota

En el caso del hueso se tiene distintas situaciones que llevan a que se generen tensiones extremas que conducen a la ruptura.

Una situación es el caso en que el hueso está fijo en un extremo y es flexionado desde el otro:



Un ejemplo es una persona que cae y se apoya en un punto, creando un punto fijo por roce mientras el centro de masa continúa desplazándose por inercia, flexionando el hueso hasta el punto en que se fractura.

Otra variante es que esté fijo en ambos extremos y reciba una fuerza perpendicular en alguna posición intermedia:



Un ejemplo típico de esto es cuando un futbolista apoya el pie (un punto fijo) y la masa de su cuerpo, por inercia, retiene el segundo punto que se puede considerar fijo, mientras otro jugador impacta con su pie la pierna del jugador.

Por último, existe la situación en que el hueso colapsa por presión axial.



En este caso, existen dos situaciones. Por un lado, puede colapsar la estructura misma del hueso y fracturarse por compresión. Por el otro lado, puede existir pandeo, es decir, por alguna inhomogeneidad se flexiona el hueso y termina deflejándose en forma extrema, llevando a la fractura.

Estos son los mecanismos básicos que luego, en la realidad, pueden iniciar el proceso comprometiendo otros huesos o extendiéndose en el mismo hueso, generando una ruptura más compleja.

ID:(222, 0)



Flexión con un punto fijo

Cita

Una situación que puede ocurrir es que una fuerza de deformación con un punto fijo ($F_1$) actúe sobre un hueso de un largo del cuerpo ($L$), el módulo de Elasticidad ($E$) y el momento de inercia de superficie ($I_s$) que está fijo en un extremo.

None



la energía de deformación con un punto fijo ($W_1$), que almacena la estructura ante una tensión para deformación con un punto fijo ($\sigma_1$), es



la fuerza de deformación con un punto fijo ($F_1$), que se aplica, lleva a una tensión para deformación con un punto fijo ($\sigma_1$), según



y la tensión para deformación con un punto fijo ($\sigma_1$), que depende de el radio exterior ($R_2$), es

ID:(739, 0)



Flexión con dos puntos fijos

Ejercicio

Una situación que puede ocurrir es que una fuerza de deformación con dos puntos fijos ($F_2$) actúe sobre un hueso con las propiedades un largo del cuerpo ($L$), el módulo de Elasticidad ($E$) y el momento de inercia de superficie ($I_s$), que está fijo en ambos extremos:

None



la energía de deformación con dos puntos fijos ($W_2$), que almacena la estructura frente a un desplazamiento en flexión con dos puntos fijos ($u_2$), es



la fuerza de deformación con dos puntos fijos ($F_2$), que se aplica, lleva a un desplazamiento en flexión con dos puntos fijos ($u_2$), según



y la tensión para deformación con dos puntos fijos ($\sigma_2$), que depende de el radio exterior ($R_2$), es

ID:(740, 0)



Pandeo

Ecuación

Una situación que puede ocurrir es que una fuerza de deformación en condición de pandeo ($F_p$) actúe a lo largo del eje del hueso con las propiedades un largo del cuerpo ($L$), el módulo de Elasticidad ($E$), el factor de pandeo ($K$), el radio efectivo ($R$) y el momento de inercia de superficie ($I_s$), generando pandeo:

None



la energía de deformación en condición de pandeo ($W_p$), se define como



la fuerza de deformación en condición de pandeo ($F_p$), la fuerza aplicada, según



y la tensión para deformación en el caso de pandeo ($\sigma_p$), que depende de el radio exterior ($R_2$), se expresa como

ID:(741, 0)



Deformación del hueso por torsión

Script

Una de las formas de generar una fractura es mediante la torsión del hueso, que implica la aplicación de torques opuestos en los extremos:

ID:(1916, 0)



Deformación elástica de la estructura del solido

Variable

La deformación elástica microscópica corresponde a una modificación de la distancia entre los átomos bajo una fuerza externa, sin que ocurra un reordenamiento de estos.

None

En general, es una deformación en la que la distancia se modifica de manera proporcional a la fuerza aplicada, y se habla de una deformación elástica.

ID:(1685, 0)



Deformación permanente explicado con átomos

Audio

La deformación plástica implica que si se reduce la tensión aplicada, el material disminuye su deformación pero termina con una deformación permanente.

None

Por lo tanto, si se somete nuevamente a tensión, por lo general vuelve a su forma elástica, pero debido a la nueva forma, no puede recuperar su forma original.

ID:(1911, 0)



Deformación plástica en la estructura del solido

Video

Una deformación plástica implica que los átomos se reordenen, disociándose de estructuras existentes y formando nuevas uniones que son estables en sí mismas. Sin embargo, dicha deformación generalmente implica una modificación en la forma del medio.

None

La deformación plástica puede finalmente llevar a modificaciones que incluyen rupturas catastróficas que son permanentes.

ID:(1686, 0)



El hueso

Unidad

Trabajaremos con un hueso y con los escenarios de caída y de golpe. Los parámetros del hueso y de las propiedades del material se resumen aquí:

Geometría y elasticidad

ID:(1556, 0)



Fractura por impacto

Code

Si un jugador recibe un impacto en la mitad del hueso y se considera que el pie, debido a la fricción, y el cuerpo, debido a la inercia, son puntos fijos, se genera una carga que flexiona el hueso.

None

Pregunta de interés: ¿Cuál es la energía, la tensión, la fuerza, el desplazamiento y la altura de salto en los que se presentaría el pandeo? ($W_{tv}$, $\sigma_{tv}$, $F_{tv}$, $u_{tv}$, $v$).

ID:(1560, 0)



La dinámica

Flujo

Se consideran dos situaciones, la caída (quiebre por pandeo, compresión o flexión) e impacto en la parte central del hueso (quiebre por flexión).

ID:(1557, 0)



Modelo

Matriz


ID:(15579, 0)