Diagrama de Fase
Storyboard 
La presión osmótica se genera en una solución cuando existe una membrana semipermeable. Esta membrana permite el paso del solvente, pero impide que el soluto la atraviese, lo que provoca un efecto de desequilibrio de presión. Como resultado, se produce una disminución de presión en el lado del solvente puro. Esta reducción impulsa el movimiento del solvente a través de la membrana hacia el lado que contiene el soluto.
El proceso continúa hasta que la presión en el lado con soluto aumenta lo suficiente para equilibrar la disminución inicial de presión, o hasta que la dilución del soluto reduce el desequilibrio de presión, alcanzando un estado de equilibrio osmótico.
ID:(660, 0)
Presión osmótica
Descripción 
La presión osmótica se genera en una solución cuando existe una membrana semipermeable. Esta membrana permite el paso del solvente, pero impide que el soluto la atraviese, lo que provoca un efecto de desequilibrio de presión. Como resultado, se produce una disminución de presión en el lado del solvente puro. Esta reducción impulsa el movimiento del solvente a través de la membrana hacia el lado que contiene el soluto. El proceso continúa hasta que la presión en el lado con soluto aumenta lo suficiente para equilibrar la disminución inicial de presión, o hasta que la dilución del soluto reduce el desequilibrio de presión, alcanzando un estado de equilibrio osmótico.
Variables
Cálculos
Cálculos
Ecuaciones
(ID 4252)
Si hay la diferencia de presión ($\Delta p$) entre dos puntos, como lo indica la ecuaci n:
| $ dp = p - p_0 $ |
podemos usar la presión de la columna de agua ($p$), que es:
| $ p_t = p_0 + \rho_w g h $ |
Esto nos da:
$\Delta p=p_2-p_1=p_0+\rho_wh_2g-p_0-\rho_wh_1g=\rho_w(h_2-h_1)g$
Dado que la diferencia de altura ($\Delta h$) es:
| $ \Delta h = h_2 - h_1 $ |
la diferencia de presión ($\Delta p$) se puede expresar como:
| $ \Delta p = \rho_w g \Delta h $ |
(ID 4345)
El número de moles ($n$) corresponde a el número de partículas ($N$) dividido por el número de Avogadro ($N_A$):
| $ n \equiv\displaystyle\frac{ N_s }{ N_A }$ |
Si multiplicamos el numerador y el denominador por la masa de la partícula ($m$), obtenemos:
$n=\displaystyle\frac{N}{N_A}=\displaystyle\frac{Nm}{N_Am}=\displaystyle\frac{M}{M_m}$
As que es:
| $ n = \displaystyle\frac{ M }{ M_m }$ |
(ID 4854)
Como la energ a molar libre de Gibbs es
| $ dg = - s dT + v dp + \mu dN $ |
se tiene que para el equilibrio entre un sistema con y sin material disuelto (
$\displaystyle\frac{V}{N_A}dp=\displaystyle\frac{V}{N_A}(p - \Phi)=\mu dN=\mu (N-N_s)$
Como sin material disuelto se debe asumir que el vapor satisface la ecuaci n de los gases se tiene que
$\mu\sim \displaystyle\frac{R}{N_A} T$
con lo que se obtiene que
| $ \Psi =\displaystyle\frac{ N_s }{ V_C } R T $ |
(ID 12820)
(ID 12827)
Ejemplos
(ID 15287)
Cuando se coloca una membrana semipermeable en el fondo de un tubo en forma de U y se agrega agua, se puede observar que al agregar material disuelto, la columna con el soluto se eleva:
Esto se debe a la presi n negativa generada por la presi n osm tica.
(ID 2024)
(ID 15634)
ID:(660, 0)
