Dielectrics within capacitance

Storyboard

Both to keep the capacitor plates separate and to increase their capacity, dielectrics are placed between the two plates. When the capacitor is charged, an electric field is generated between the plates that polarizes the dielectric molecules. This acts as a system of multiple capacitors connected in series which is equivalent to increasing the section and with it the capacity.

>Model

ID:(1395, 0)



Discharge of a capacity

Definition


ID:(1926, 0)



Dielectrics within capacitance

Description

Both to keep the capacitor plates separate and to increase their capacity, dielectrics are placed between the two plates. When the capacitor is charged, an electric field is generated between the plates that polarizes the dielectric molecules. This acts as a system of multiple capacitors connected in series which is equivalent to increasing the section and with it the capacity.

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$C$
C
Capacitor capacity
F
$\epsilon$
epsilon
Dielectric constant
-
$d$
d
Distance between plates
m
$S$
S
Surface plates
m^2

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

Si se define una superficie que pasa entre las placas y rodea la carga Q se puede aplicar la ley de Gauss para calcular el campo que se forma entre las placas. Si se asume que el campo solo existe entre las dos placas y estas tienen una superficie S se obtiene que

$E_dS=\displaystyle\frac{Q}{\epsilon\epsilon_0}$



con \epsilon_0 la constante de campo y \epsilon el n mero diel ctrico.

Como por otro lado el campo es igual a la diferencia de potencial \Delta\varphi partido por la distancia entre las placas d se obtiene

$\Delta\varphi = \displaystyle\frac{\sigma}{\epsilon\epsilon_0}d=E_dd=\displaystyle\frac{Q}{\epsilon\epsilon_0}\displaystyle\frac{d}{S}$



se obtiene con la definici n

$\Delta\varphi=\displaystyle\frac{Q}{C}$



que la capacidad de dos placas se puede calcular con

$ C = \epsilon_0 \epsilon \displaystyle\frac{ S }{ d }$

(ID 3865)


ID:(1395, 0)