Theory

Storyboard

>Model

ID:(65, 0)



Fisting Horizontal Plane

Definition

ID:(2695, 0)



Fist from Above

Image

ID:(2696, 0)



Acción y Reacción

Note

G_r=-F_r

ID:(4642, 0)



Force on the Phalanx

Quote

ID:(1346, 0)



Force on the Phalanx, previous

Exercise

ID:(1347, 0)



Theory

Description

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\vec{F}_A$
&F_A
Action force (vector)
N
$\theta$
theta
Angle of the Falange regarding the Vertical
rad
$G_l$
G_l
Axial Force
N
$F_r$
F_r
Component $r$ of the Force $\vec{F}$
N
$F_x$
F_x
Component $x$ of the Force $\vec{F}$
N
$F_y$
F_y
Component $y$ of the Force $\vec{F}$
N
$F_l$
F_l
Component $z$ of the Force $\vec{F}$
N
$l$
l
Falange Length
m
$r$
r
Falange Radius
m
$T_i$
T_i
i-th Torque
N
$F_i$
F_i
ith Force
$G_r$
G_r
Radial Force
N
$G_x$
G_x
Reaction Force $x$
N
$G_y$
G_y
Reaction Force $y$
N
$\vec{F}_R$
&F_R
Reaction force (vector)
N
$T$
T
Tendon Force
N

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

G_r=-F_r

(ID 4642)

F_x=F_l\sin\theta+F_r\cos\theta

(ID 4637)

F_y=-F_l\cos\theta+F_r\sin\theta

(ID 4638)

F_l=F_x\sin\theta-F_y\cos\theta

(ID 4639)

F_r=F_x\cos\theta+F_y\sin\theta

(ID 4640)

T=\displaystyle\frac{l}{r}F_r

(ID 4641)

Para que el centro de masa no se desplace es necesario que las fuerzas radiales se compensen, es decir

$G_r+F_r=0$

(ID 7334)

G_l=\displaystyle\frac{lF_r-rF_l}{r}

(ID 4643)

Cuando un cuerpo esta en equilibrio su centro de masa no se esta desplazando. Para ello la suma de las fuerzas sobre este deben ser nula o sea con debe ser

$\displaystyle\sum_i \vec{F}_i=0$

(ID 10753)

When a body is in rotational equilibrium, it does not rotate around its center of mass. To achieve this, the sum of the torques acting on it must be zero. This implies that:

$\displaystyle\sum_i \vec{T}_i=0$

(ID 10754)

The relationship between the action force ($F_A$) and the reaction force ($F_R$) in one dimension:

$ F_R =- F_A $



can be generalized to more dimensions with the action force (vector) ($\vec{F}_A$) and the reaction force (vector) ($\vec{F}_R$), as follows:

$ \vec{F}_R = - \vec{F}_A $

(ID 3240)


ID:(65, 0)