Deportes y Fracturas

Storyboard

>Model

ID:(457, 0)



Energía del salto en Skate

Image

>Top


ID:(1557, 0)



Tensiones de los Modos de Fractura

Storyboard

>Model

ID:(1559, 0)



Tensiones en los Quiebres

Image

>Top


ID:(1561, 0)



Volume

Equation

>Top, >Model


The volume ($V$) out of ($$) that does not vary along the height ($h$) is equal to

$ V = S h $

$h$
Height
$m$
$S$
Section
$m^2$
$V$
Volume
$m^3$



The expression holds even if the shape, but not the value, of section the section ($S$) varies along the height, as long as its total area remains constant.

ID:(3792, 0)



Cylinder

Equation

>Top, >Model


$V=\pi r^2h$

ID:(3702, 0)



Translational Kinetic Energy

Equation

>Top, >Model


In the case of studying translational motion, the definition of energy

$ \Delta W = \vec{F} \cdot \Delta\vec{s} $



is applied to Newton's second law

$ F = m_i a $



resulting in the expression

$ K_t =\displaystyle\frac{1}{2} m_i v ^2$

$m_i$
Inertial Mass
$kg$
$v$
Speed
$m/s$
$K_t$
Translational Kinetic Energy
$J$

The energy required for an object to transition from velocity $v_1$ to velocity $v_2$ can be calculated using the definition with

$ \Delta W = \vec{F} \cdot \Delta\vec{s} $



Using the second law of Newton, this expression can be rewritten as

$\Delta W = m a \Delta s = m\displaystyle\frac{\Delta v}{\Delta t}\Delta s$



Employing the definition of velocity with

$ \bar{v} \equiv\displaystyle\frac{ \Delta s }{ \Delta t }$



we obtain

$\Delta W = m\displaystyle\frac{\Delta v}{\Delta t}\Delta s = m v \Delta v$



where the difference in velocities is

$\Delta v = v_2 - v_1$



Furthermore, the velocity itself can be approximated by the average velocity

$v = \displaystyle\frac{v_1 + v_2}{2}$



Using both expressions, we arrive at

$\Delta W = m v \Delta v = m(v_2 - v_1)\displaystyle\frac{(v_1 + v_2)}{2} = \displaystyle\frac{m}{2}(v_2^2 - v_1^2)$



Thus, the change in energy is given by

$\Delta W = \displaystyle\frac{m}{2}v_2^2 - \displaystyle\frac{m}{2}v_1^2$



In this way, we can define kinetic energy

$ K_t =\displaystyle\frac{1}{2} m_i v ^2$

ID:(3244, 0)



Sine

Equation

>Top, >Model


The relationship between the angle \theta, the opposite leg b and the hypotenuse c is given by the relationship

$\sin \theta =\displaystyle\frac{ b }{ c }$



To calculate the corresponding function can be used

ID:(3328, 0)



Kinetic Energy of Rotation

Equation

>Top, >Model


In the case being studied of translational motion, the definition of energy

$ \Delta W = T \Delta\theta $



is applied to Newton's second law

$ T = I \alpha $



resulting in the expression

$ K_r =\displaystyle\frac{1}{2} I \omega ^2$

$\omega$
Angular Speed
$rad/s$
$K_r$
Kinetic energy of rotation
$J$
$I$
Moment of inertia for axis that does not pass through the CM
$kg m^2$

The energy required for an object to change its angular velocity from $\omega_1$ to $\omega_2$ can be calculated using the definition

$ \Delta W = T \Delta\theta $



Applying Newton's second law, this expression can be rewritten as

$\Delta W=I \alpha \Delta\theta=I\displaystyle\frac{\Delta\omega}{\Delta t}\Delta\theta$



Using the definition of angular velocity

$ \bar{\omega} \equiv\displaystyle\frac{ \Delta\theta }{ \Delta t }$



we get

$\Delta W=I\displaystyle\frac{\Delta\omega}{\Delta t}\Delta\theta=I \omega \Delta\omega$



The difference in angular velocities is

$\Delta\omega=\omega_2-\omega_1$



On the other hand, angular velocity itself can be approximated with the average angular velocity

$\omega=\displaystyle\frac{\omega_1+\omega_2}{2}$



Using both expressions, we obtain the equation

$\Delta W=I \omega \Delta \omega=I(\omega_2-\omega_1)\displaystyle\frac{(\omega_1+\omega_2)}{2}=\displaystyle\frac{I}{2}(\omega_2^2-\omega_1^2)$



Thus, the change in energy is given by

$\Delta W=\displaystyle\frac{I}{2}\omega_2^2-\displaystyle\frac{I}{2}\omega_1^2$



This allows us to define kinetic energy as

$ K_r =\displaystyle\frac{1}{2} I \omega ^2$

ID:(3255, 0)



Cosine

Equation

>Top, >Model


The relationship between the angle \theta, the adjacent leg a and the hypotenuse c is given by the relationship

$\cos \theta =\displaystyle\frac{ a }{ c }$



To calculate the corresponding function can be used

ID:(3327, 0)



Total Kinetic Energy

Equation

>Top, >Model


Kinetic energy can be of translation and/or rotation. Therefore, the total kinetic energy is the sum of both:

$ K = K_t + K_r $

$K_r$
Kinetic energy of rotation
$J$
$K$
Total Kinetic Energy
$J$
$K_t$
Translational Kinetic Energy
$J$

ID:(3686, 0)



Tangent

Equation

>Top, >Model


The relationship between the angle \theta, the adjacent leg a and opposite b is given by the relation

$\tan \theta =\displaystyle\frac{ b }{ a }$



To calculate the corresponding function can be used

ID:(3329, 0)



Gravitational potential energy at the planet's surface

Equation

>Top, >Model


At the surface of the planet, the gravitational force is

$ F_g = m_g g $



and the energy

$ \Delta W = \vec{F} \cdot \Delta\vec{s} $



can be shown to be

$ V = m g z $

$g$
Gravitational Acceleration
9.8
$m/s^2$
$z$
Height above Floor
$m$
$m$
Mass
$kg$
$V$
Potential Energy
$J$

As the gravitational force is

$ F_g = m_g g $



with $m$ representing the mass. To move this mass from a height $h_1$ to a height $h_2$, a distance of

$ V = m g ( h_2 - h_1 )$



is covered. Therefore, the energy

$ \Delta W = \vec{F} \cdot \Delta\vec{s} $



with $\Delta s=\Delta h$ gives us the variation in potential energy:

$\Delta W = F\Delta s=mg\Delta h=mg(h_2-h_1)=U_2-U_1=\Delta V$



thus, the gravitational potential energy is

$ V = m g z $

ID:(3245, 0)