Distribution and Entropy

Storyboard

When analyzing the probability of finding the system in a particular state, we observe that the equilibrium condition ($\beta$) is an integral part of the distribution's structure. Furthermore, it becomes evident that the function that best models the system is the logarithm of the number of states, which is associated with what we will term entropy.

>Model

ID:(437, 0)



Distribution and Entropy

Description

When analyzing the probability of finding the system in a particular state, we observe that the equilibrium condition ($\beta$) is an integral part of the distribution's structure. Furthermore, it becomes evident that the function that best models the system is the logarithm of the number of states, which is associated with what we will term entropy.

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\beta$
beta
Beta del sistema
1/J
$k_B$
k_B
Constante de Boltzmann
J/K
$\eta$
eta
Desviación de la energía
J
$E_2$
E_2
Energía del reservorio
J
$E$
E
Energía del sistema
J
$\bar{E}$
mE
Energía media del sistema
J
$S$
S
Entropia del sistema
J/K
$S_{max}$
S_max
Entropia máxima
J/K
$\ln(\Omega(E))$
ln_Omega_E
Logaritmo del numero de estados del sistema con la energía $E$
-
$\ln(\Omega(\bar{E}))$
ln_Omega_E_m
Logaritmo del numero de estados del sistema con la energía media $\bar{E}$
-
$\lambda$
lambda
Medida del ancho de la distribución de probabilidad
1/J^2
$\lambda_0$
lambda_0
Medida del ancho de la distribución de probabilidad total
1/J^2
$\Omega_E$
Omega_E
Numero de estados del sistema con la energía $E$
-
$P_E$
P_E
Probabilidad del sistema de tener una energía $E$
-
$P_0$
P_0
Probabilidad del sistema de tener una energía media $\bar{E}$
-
$T$
T
Temperatura del sistema
K

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

When we multiply the number of cases, we obtain a function with a very pronounced peak.

The system is more likely to be found at the energy where the peak of the probability curve occurs.

(ID 11543)


ID:(437, 0)