Benützer:


Verteilung und Entropie

Storyboard

Wenn wir die Wahrscheinlichkeit analysieren, das System in einem bestimmten Zustand zu finden, stellen wir fest, dass die Gleichgewichtsbedingung ($\beta$) ein integraler Bestandteil der Verteilungsstruktur ist. Darüber hinaus wird deutlich, dass die Funktion, die das System am besten modelliert, der Logarithmus der Anzahl der Zustände ist, was mit dem Begriff Entropie verknüpft ist.

>Modell

ID:(437, 0)



Bilden eines Maximums

Bild

Wenn wir die Anzahl der Fälle multiplizieren, erhalten wir eine Funktion mit einem sehr ausgeprägten Maximum.

Das System wird mit größerer Wahrscheinlichkeit bei der Energie gefunden, an der das Maximum der Wahrscheinlichkeitskurve auftritt.

ID:(11543, 0)



Verteilung und Entropie

Modell

Wenn wir die Wahrscheinlichkeit analysieren, das System in einem bestimmten Zustand zu finden, stellen wir fest, dass die Gleichgewichtsbedingung ($\beta$) ein integraler Bestandteil der Verteilungsstruktur ist. Darüber hinaus wird deutlich, dass die Funktion, die das System am besten modelliert, der Logarithmus der Anzahl der Zustände ist, was mit dem Begriff Entropie verknüpft ist.

Variablen

Symbol
Text
Variable
Wert
Einheiten
Berechnen
MKS-Wert
MKS-Einheiten
$\beta$
beta
Beta del sistema
1/J
$k_B$
k_B
Constante de Boltzmann
J/K
$\eta$
eta
Desviación de la energía
J
$E_2$
E_2
Energía del reservorio
J
$E$
E
Energía del sistema
J
$\bar{E}$
mE
Energía media del sistema
J
$S$
S
Entropia del sistema
J/K
$S_{max}$
S_max
Entropia máxima
J/K
$\ln(\Omega(E))$
ln_Omega_E
Logaritmo del numero de estados del sistema con la energía $E$
-
$\ln(\Omega(\bar{E}))$
ln_Omega_E_m
Logaritmo del numero de estados del sistema con la energía media $\bar{E}$
-
$\lambda$
lambda
Medida del ancho de la distribución de probabilidad
1/J^2
$\lambda_0$
lambda_0
Medida del ancho de la distribución de probabilidad total
1/J^2
$\Omega_E$
Omega_E
Numero de estados del sistema con la energía $E$
-
$P_E$
P_E
Probabilidad del sistema de tener una energía $E$
-
$P_0$
P_0
Probabilidad del sistema de tener una energía media $\bar{E}$
-
$T$
T
Temperatura del sistema
K

Berechnungen


Zuerst die Gleichung auswählen:   zu ,  dann die Variable auswählen:   zu 

Symbol
Gleichung
Gelöst
Übersetzt

Berechnungen

Symbol
Gleichung
Gelöst
Übersetzt

 Variable   Gegeben   Berechnen   Ziel :   Gleichung   Zu verwenden



Gleichungen


Beispiele

Wenn wir die Anzahl der F lle multiplizieren, erhalten wir eine Funktion mit einem sehr ausgepr gten Maximum.

Das System wird mit gr erer Wahrscheinlichkeit bei der Energie gefunden, an der das Maximum der Wahrscheinlichkeitskurve auftritt.

(ID 11543)


ID:(437, 0)