Equation of the orbit
Storyboard 
In dem Fall, dass ein Körper um eine bestimmte Höhe gegen die Schwerkraft angehoben wird, wird die potentielle Schwerkraftenergie erhalten, die proportional zu Masse, Schwerkraftbeschleunigung und Höhe ist.
ID:(1422, 0)
Equation of the orbit
Description 
When a body is lifted against the gravitational force to a given height, it gains gravitational potential energy, which is proportional to its mass, the gravitational acceleration, and the height reached.
Variables
Calculations
Calculations
Equations
The energy required for an object to change its angular velocity from $\omega_1$ to $\omega_2$ can be calculated using the definition
| $ \Delta W = T \Delta\theta $ |
Applying Newton's second law, this expression can be rewritten as
$\Delta W=I \alpha \Delta\theta=I\displaystyle\frac{\Delta\omega}{\Delta t}\Delta\theta$
Using the definition of angular velocity
| $ \bar{\omega} \equiv\displaystyle\frac{ \Delta\theta }{ \Delta t }$ |
we get
$\Delta W=I\displaystyle\frac{\Delta\omega}{\Delta t}\Delta\theta=I \omega \Delta\omega$
The difference in angular velocities is
$\Delta\omega=\omega_2-\omega_1$
On the other hand, angular velocity itself can be approximated with the average angular velocity
$\omega=\displaystyle\frac{\omega_1+\omega_2}{2}$
Using both expressions, we obtain the equation
$\Delta W=I \omega \Delta \omega=I(\omega_2-\omega_1)\displaystyle\frac{(\omega_1+\omega_2)}{2}=\displaystyle\frac{I}{2}(\omega_2^2-\omega_1^2)$
Thus, the change in energy is given by
$\Delta W=\displaystyle\frac{I}{2}\omega_2^2-\displaystyle\frac{I}{2}\omega_1^2$
This allows us to define kinetic energy as
| $ K_t =\displaystyle\frac{1}{2} m_i v ^2$ |
(ID 3244)
The work variance ($\Delta W$) required for an object to change from the initial Angular Speed ($\omega_0$) to the angular Speed ($\omega$) is obtained by applying a the torque ($T$) that produces an angular displacement the difference of Angles ($\Delta\theta$), according to:
| $ \Delta W = T \Delta\theta $ |
Applying Newton's second law for rotation, in terms of the moment of inertia for axis that does not pass through the CM ($I$) and the mean Angular Acceleration ($\bar{\alpha}$):
| $ T = I \alpha $ |
this expression can be rewritten as:
$\Delta W = I \alpha \Delta\theta$
or, using the difference in Angular Speeds ($\Delta\omega$) and the time elapsed ($\Delta t$):
| $ \bar{\alpha} \equiv \displaystyle\frac{ \Delta\omega }{ \Delta t }$ |
we get:
$\Delta W = I\displaystyle\frac{\Delta\omega}{\Delta t} \Delta\theta$
Using the definition of the mean angular velocity ($\bar{\omega}$) and the time elapsed ($\Delta t$):
| $ \bar{\omega} \equiv\displaystyle\frac{ \Delta\theta }{ \Delta t }$ |
results in:
$\Delta W = I\displaystyle\frac{\Delta\omega}{\Delta t} \Delta\theta = I\omega \Delta\omega$
where the difference in Angular Speeds ($\Delta\omega$) is expressed as:
| $ \Delta\omega = \omega_2 - \omega_1 $ |
On the other hand, the angular velocity can be approximated by the average angular velocity:
$\bar{\omega}=\displaystyle\frac{\omega_1 + \oemga_2}{2}$
By combining both expressions, we obtain the equation:
$\Delta W = I \omega \Delta\omega = I(\omega_2 - \omega_1) \displaystyle\frac{(\omega_1 + \omega_2)}{2} = \displaystyle\frac{I}{2}(\omega_2^2 - \omega_1^2)$
Therefore, the change in energy is expressed as:
$\Delta W = \displaystyle\frac{I}{2}\omega_2^2 - \displaystyle\frac{I}{2}\omega_1^2$
This allows us to define the rotational kinetic energy as:
| $ K_r =\displaystyle\frac{1}{2} I \omega ^2$ |
(ID 3255)
The relationship between the angular Momentum ($L$) and the moment ($p$) is expressed as:
| $ L = r p $ |
Using the radius ($r$), this expression can be equated with the moment of Inertia ($I$) and the angular Speed ($\omega$) as follows:
| $ L = I \omega $ |
Then, substituting with the inertial Mass ($m_i$) and the speed ($v$):
| $ p = m_i v $ |
and
| $ v = r \omega $ |
it can be concluded that the moment of inertia of a particle rotating in an orbit is:
| $ I = m_i r ^2$ |
(ID 3602)
(ID 3686)
(ID 3687)
Just as the relationship between the speed ($v$) and the angular Speed ($\omega$) with the radius ($r$) is expressed by the equation:
| $ v = r \omega $ |
we can establish a relationship between the angular Momentum ($L$) and the moment ($p$) in the context of translation. However, in this case, the multiplicative factor is not the arm ($r$), but rather the moment ($p$). This relationship is expressed as:
| $ L = I \omega $ |
(ID 9874)
The total Kinetic Energy ($K$) corresponds to the sum of the translational Kinetic Energy ($K_t$) and the kinetic energy of rotation ($K_r$):
| $ K = K_t + K_r $ |
Since the translational Kinetic Energy ($K_t$) is expressed as a function of the inertial Mass ($m_i$) and the speed ($v$):
| $ K_t =\displaystyle\frac{1}{2} m_i v ^2$ |
and the kinetic energy of rotation ($K_r$), as a function of the moment of inertia for axis that does not pass through the CM ($I$) and the angular Speed ($\omega$), is defined as:
| $ K_r =\displaystyle\frac{1}{2} I \omega ^2$ |
the final expression is:
| $ K =\displaystyle\frac{1}{2} m_i v ^2+\displaystyle\frac{1}{2} I \omega ^2$ |
(ID 9944)
As the gravitational force is
| $ F = G \displaystyle\frac{ m_g M }{ r ^2}$ |
To move a mass $m$ from a distance $r_1$ to a distance $r_2$ from the center of the planet, a potential energy is required
| $ W =\displaystyle\int_C \vec{F} \cdot d \vec{s} $ |
resulting in the gravitational potential energy being
$W_2-W_1=\displaystyle\int_{r_1}^{r_2}\displaystyle\frac{GmM}{r^2}dr=\displaystyle\frac{GmM}{r_1}-\displaystyle\frac{GmM}{r_2}$
thus yielding
| $ V = - \displaystyle\frac{ G m_g M }{ r } $ |
(ID 12551)
(ID 12552)
The total Energy ($E$) depends on the total Kinetic Energy ($K$) and the general gravitational potential energy ($V$), according to:
| $ E = K + V $ |
When the object is in orbit, the total Kinetic Energy ($K$) consists of a translational part and a rotational part. Considering the inertial Mass ($m_i$), the speed ($v$), the moment of Inertia ($I$) and the angular Speed ($\omega$), we have:
| $ K =\displaystyle\frac{1}{2} m_i v ^2+\displaystyle\frac{1}{2} I \omega ^2$ |
Since the angular Momentum ($L$) is:
| $ L = I \omega $ |
and using the distance to the center of the celestial body ($r$), we obtain:
| $ I = m_i r ^2$ |
On the other hand, the gravitational potential, expressed in terms of the mass of the celestial body ($M$), the gravitational mass ($m_g$) and the gravitational constant ($G$), is:
| $ V = - \displaystyle\frac{ G m_g M }{ r } $ |
Therefore, it follows that:
| $ E = \displaystyle\frac{1}{2} m_i v ^2 - \displaystyle\frac{ G m_g M }{ r } + \displaystyle\frac{ L ^2}{2 m_i r ^2}$ |
(ID 16251)
Examples
(ID 15864)
(ID 15863)
ID:(1422, 0)
