Processing math: 0%
User: No user logged in.


Geometría Básica

Storyboard

>Model

ID:(419, 0)



Basic Geometry

Definition

ID:(494, 0)



Angle

Image

ID:(1834, 0)



Points and Coordinates

Note

ID:(1821, 0)



Segment

Quote

ID:(1822, 0)



Straight Line

Exercise

ID:(1832, 0)



Parallel Lines

Equation

ID:(1838, 0)



Line crossing Parallel Lines

Script

ID:(1839, 0)



Triangle

Variable

ID:(1820, 0)



Related Triangles

Audio

ID:(1819, 0)



Similarity of Triangles

Video

ID:(1823, 0)



Circle

Unit

ID:(1833, 0)



Secant

Code

ID:(1836, 0)



Rope

Flux

ID:(1837, 0)



Tangent to a Circle

Matrix

ID:(1835, 0)



Geometría Básica

Description

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
AC
AC
Adjacent Side
\gamma
gamma
Angle
rad
\beta
beta
Angle
rad
\theta
theta
Angle
rad
\alpha
alpha
Angulo \alpha
rad
DE
DE
Exponent
DF
DF
Function
y_0
y_0
Half Sum (3)
x_0
x_0
Half Suma (2)
m
s
s
Position
m
AB
AB
Power Base
r
r
Radius
m
x
x
Variable 1
m
y
y
Variable 2
m
r
r
Variable 3
m
m
m
Variable 4
m
b
b
Variable b

Calculations


First, select the equation:   to ,  then, select the variable:   to 
\displaystyle\frac{\bar{AB}}{\bar{AC}}=\displaystyle\frac{\bar{DE}}{\bar{DF}} alpha + beta + gamma = pi y = m * x + b s = r * theta ( x - x_0 )^2+( y - y_0 )^2= r ^2ACgammabetathetaalphaDEDFy_0x_0sABrxyrmb

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used
\displaystyle\frac{\bar{AB}}{\bar{AC}}=\displaystyle\frac{\bar{DE}}{\bar{DF}} alpha + beta + gamma = pi y = m * x + b s = r * theta ( x - x_0 )^2+( y - y_0 )^2= r ^2ACgammabetathetaalphaDEDFy_0x_0sABrxyrmb



Equations


Examples

(ID 1834)

Since the perimeter of a circle is 2\pi r, ERROR:6294 along the circle will correspond to the arc spanned by ERROR:5059, so:

s = r \theta

(ID 3324)

(ID 1822)

(ID 1832)

$y = mx + b

$

(ID 3323)

(ID 1820)

\alpha+\beta+\gamma=\pi

(ID 3322)

\displaystyle\frac{\bar{AB}}{\bar{A'B'}}=\displaystyle\frac{\bar{AC}}{\bar{A'C'}}=\displaystyle\frac{\bar{BC}}{\bar{B'C'}}

(ID 3263)

(ID 1833)

(x-x_0)^2+(y-y_0)^2=r^2

(ID 3325)

(ID 1836)

(ID 1837)


ID:(419, 0)