Processing math: 0%
User: No user logged in.


Funciones Hiperbólicas

Storyboard

>Model

ID:(426, 0)



Hyperbolic Functions

Definition

ID:(508, 0)



Funciones Hiperbólicas

Storyboard

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
x
x
Equal Variables
y
y
Nullity of Variables
m

Calculations


First, select the equation:   to ,  then, select the variable:   to 
y=\sinh(x)=\displaystyle\frac{1}{2}(e^x-e^{-x})y=\cosh(x)=\displaystyle\frac{1}{2}(e^x+e^{-x})y=\tanh(x)=\displaystyle\frac{e^x-e^{-x}}{e^x+e^{-x}}y=\sinh^{-1}(x)=\ln(x+\sqrt{x^2+1})y=\cosh^{-1}(x)=\ln(x+\sqrt{x^2-1})y=\tanh^{-1}(x)=\displaystyle\frac{1}{2}\ln\left(\displaystyle\frac{1+x}{1-x}\right)xy

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used
y=\sinh(x)=\displaystyle\frac{1}{2}(e^x-e^{-x})y=\cosh(x)=\displaystyle\frac{1}{2}(e^x+e^{-x})y=\tanh(x)=\displaystyle\frac{e^x-e^{-x}}{e^x+e^{-x}}y=\sinh^{-1}(x)=\ln(x+\sqrt{x^2+1})y=\cosh^{-1}(x)=\ln(x+\sqrt{x^2-1})y=\tanh^{-1}(x)=\displaystyle\frac{1}{2}\ln\left(\displaystyle\frac{1+x}{1-x}\right)xy



Equations


Examples

y=\sinh(x)=\displaystyle\frac{1}{2}(e^x-e^{-x})

y=\cosh(x)=\displaystyle\frac{1}{2}(e^x+e^{-x})

y=\tanh(x)=\displaystyle\frac{e^x-e^{-x}}{e^x+e^{-x}}

y=\sinh^{-1}(x)=\ln(x+\sqrt{x^2+1})

y=\cosh^{-1}(x)=\ln(x+\sqrt{x^2-1})

y=\tanh^{-1}(x)=\displaystyle\frac{1}{2}\ln\left(\displaystyle\frac{1+x}{1-x}\right)


>Model

ID:(426, 0)