Fourier Transform

Storyboard

>Model

ID:(116, 0)



Fast Fourier Transformation (FFT)

Definition

ID:(1343, 0)



Time Series

Image

ID:(1337, 0)



Fourier Transform

Storyboard

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\omega$
omega
Angular frequency
rad/s
$\nu$
nu
Sound frequency
Hz

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

t=n\Delta t

x(t)=\displaystyle\frac{a_0}{2}+\sum_{k=1}^{\infty}(a_k\cos\omega_kt+b_k\sin\omega_k t)

a_k=\displaystyle\frac{2}{T}\int_0^Tx(t)\cos \omega_kt dt

b_k=\displaystyle\frac{2}{T}\int_0^Tx(t)\sin\omega_kt dt

The relationship between the angular frequency ($\omega$) and the sound frequency ($\nu$) is expressed as:

kyon

\omega_k=\displaystyle\frac{2\pi k}{T}

X_k=\sqrt{a_k^2+b_k^2}

\phi_k=\arctan\displaystyle\frac{b_k}{a_k}

$X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-i\omega t}dt$

x(t)=\int_{-\infty}^{\infty}X(\omega)e^{+i\omega t}d\omega

x(t)=\bar{x}+\sum_{k=1}^{\infty}X_k\cos(\omega_kt-\phi_k)


>Model

ID:(116, 0)