Anwendung
Storyboard 
Variablen
Berechnungen
Berechnungen
Gleichungen
Beispiele
m\displaystyle\frac{d^2y}{dt^2}+c\displaystyle\frac{dy}{dt}+ky=k_0x(t)
\omega_0=\sqrt{\displaystyle\frac{k}{m}}
\zeta=\displaystyle\frac{c}{2\sqrt{km}}
y(t)=\int_{-\infty}^{\infty}d\tau h(\tau)x(t-\tau)
Y(\omega)=\int_{-\infty}^{\infty}y(t)e^{-i\omega t}dt
H(\omega)=\int_{-\infty}^{\infty}h(t)e^{-i\omega t}dt
y(\omega)=H(\omega)x(\omega)
|H(\omega)|=\displaystyle\frac{1}{k\sqrt{(1-\omega^2/\omega_0^2)^2+4\zeta^2\omega^2/\omega_0^2}}
\phi(\omega)=\arctan\left(\displaystyle\frac{2\zeta\omega/\omega_0}{1-\omega^2/\omega_0^2}\right)
ID:(118, 0)
