Sound propagation

Storyboard

The sound wave is propagated so that its energy per area element is reduced as it moves away from the source.

>Model

ID:(386, 0)



Propagation of Sound

Note

ID:(516, 0)



Spherical propagation

Quote

ID:(11829, 0)



Sum of intensities and powers

Exercise

ID:(11830, 0)



Sound propagation

Description

The sound wave is propagated so that its energy per area element is reduced as it moves away from the source.

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$r$
r
Distance between Emitter and Receiver
m
$I_i$
I_i
Intensidad Sonora de la fuente i
W/m^2
$I$
I
Intensity in the distance
W/m^2
$I_0$
I_0
Intensity on the Surface of the Source
W/m^2
$\rho$
rho
Mean density
kg/m^3
$L$
L
Noise level
dB
$I_{ref}$
I_ref
Reference intensity
W/m^2
$p_{ref}$
p_ref
Reference pressure
Pa
$I$
I
Sound Intensity
W/m^2
$P$
P
Sound Power
W
$p_s$
p_s
Sound pressure
Pa
$r_0$
r_0
Source Size
m
$c$
c
Speed of sound
m/s
$I_{tot}$
I_tot
Total Loudness
W/m^2

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

Sound propagates and interacts with various edges and objects. On flat surfaces it is reflected under the same angle it affects (ground, building). However, the wind leads to refraction with what the beams bend:

(ID 516)

For a point source, the sound spreads in all directions uniformly. Therefore, the sound level will be reduced due to the effect that the energy is distributed over a surface of a sphere of radius r equal to the path traveled

(ID 11829)

Si consideramos una fuente puntual, la intensidad del sonido es con

$ I =\displaystyle\frac{ P }{ S }$



se propagara en forma esf rica. En este caso la superficie es con

$ S = 4 \pi r ^2$



con lo que la intensidad es con

$ I =\displaystyle\frac{1}{4 \pi }\displaystyle\frac{ P }{ r ^2}$

(ID 15566)

Si se considera una esfera en torno de la fuente a un radio r_0 la potencia W sera igual a

$W=4\pi r_0^2 I_0$



por lo que la intensidad es con distance between Emitter and Receiver $m$, intensity in the distance $W/m^2$ and sound Power $W$

$ I =\displaystyle\frac{1}{4 \pi }\displaystyle\frac{ P }{ r ^2}$



a una distancia r tendr con distance between Emitter and Receiver $m$, intensity in the distance $W/m^2$ and sound Power $W$ la magnitud:

$ I =\displaystyle\frac{ r_0 ^2}{ r ^2} I_0 $

(ID 15567)

Since the different beams do not interact, the intensity and power that occurs at any point in space is equal to the sum of the individual contributions:

(ID 11830)


(ID 15455)


ID:(386, 0)