Velocity of Sound in the Sea

Storyboard

The speed of sound in the sea depends on the pressure, temperature and salinity.

>Model

ID:(1548, 0)



Mechanisms

Definition


ID:(15462, 0)



Speed of sound with depth

Image

The speed of sound in the ocean varies with depth as shown in the graph:

The shape of the curve can vary depending on the time of year.

ID:(11814, 0)



Dependence on the speed of sound

Note

The speed of sound in the ocean depends on the temperature and pressure as shown in the graph:

ID:(11815, 0)



Model

Quote


ID:(15465, 0)



Velocity of Sound in the Sea

Storyboard

The speed of sound in the sea depends on the pressure, temperature and salinity.

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\theta_1$
theta_1
Angle at which sound strikes medium 1
rad
$\theta_2$
theta_2
Angle at which sound strikes medium 2
rad
$\theta_i$
theta_i
Angulo de incidente
rad
$\theta_r$
theta_r
Angulo de refracción
rad
$p$
p
Presión hidrostatica
Pa
$p_1$
p_1
Pressure in medium 1
Pa
$p_2$
p_2
Pressure in medium 2
Pa
$s$
s
Salinity
-
$s_1$
s_1
Salinity in medium 1
-
$s_2$
s_2
Salinity in medium 2
-
$\nu$
nu
Sound frequency
Hz
$c_0$
c_0
Sound speed factor 0
m/s K^3
$c_{01}$
c_01
Sound speed factor 1
m/s K^2
$c_{02}$
c_02
Sound speed factor 2
m/s K #
$c_{03}$
c_03
Sound speed factor 3
m/s K
$c_{04}$
c_04
Sound speed factor 4
m/s Pa
$c_{05}$
c_05
Sound speed factor 5
m/s #
$c_{06}$
c_06
Sound speed factor 6
m/s
$c$
c
Speed of sound
m/s
$c_1$
c_1
Speed of sound in medium 1
m/s
$c_2$
c_2
Speed of sound in medium 2
m/s
$T$
T
Temperature
K
$T_1$
T_1
Temperature in medium 1
K
$T_2$
T_2
Temperature in medium 2
K
$c_i$
c_i
Velocidad de la luz en el medio incidente
m/s
$c_e$
c_e
Velocidad de la luz en el medio refractado
m/s
$\lambda_1$
lambda_1
Wavelength in medium 1
m
$\lambda_2$
lambda_2
Wavelength in medium 2
m

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations

Observando la imagen se nota que los senos de los angulos son respectivamente\\n\\n

$\sin\theta_i=\displaystyle\frac{c_i\Delta t}{d}$

y\\n\\n

$\sin\theta_e=\displaystyle\frac{c_e\Delta t}{d}$

\\n\\nSi se despeja en ambas ecuaciones la distancia d y se igualan ambas expresiones se tiene que\\n\\n

$d=\displaystyle\frac{c_i\Delta t}{\sin\theta_i}=\displaystyle\frac{c_e\Delta t}{\sin\theta_e}$



por lo que se tiene que

equation

Observando la imagen se nota que los senos de los angulos son respectivamente\\n\\n

$\sin\theta_i=\displaystyle\frac{c_i\Delta t}{d}$

y\\n\\n

$\sin\theta_e=\displaystyle\frac{c_e\Delta t}{d}$

\\n\\nSi se despeja en ambas ecuaciones la distancia d y se igualan ambas expresiones se tiene que\\n\\n

$d=\displaystyle\frac{c_i\Delta t}{\sin\theta_i}=\displaystyle\frac{c_e\Delta t}{\sin\theta_e}$



por lo que se tiene que

equation

Given that the photon frequency ($\nu$) is the inverse of the period ($T$):

$\nu=\displaystyle\frac{1}{T}$



this means that the speed of Light ($c$) is equal to the distance traveled in one oscillation, which is ERROR:8439, divided by the elapsed time, which corresponds to the period:

$c=\displaystyle\frac{\lambda}{T}$



In other words, the following relationship holds:

equation

Given that the photon frequency ($\nu$) is the inverse of the period ($T$):

$\nu=\displaystyle\frac{1}{T}$



this means that the speed of Light ($c$) is equal to the distance traveled in one oscillation, which is ERROR:8439, divided by the elapsed time, which corresponds to the period:

$c=\displaystyle\frac{\lambda}{T}$



In other words, the following relationship holds:

equation


Examples


mechanisms

The speed of sound in the ocean varies with depth as shown in the graph:

image

The shape of the curve can vary depending on the time of year.

The speed of sound in the ocean depends on the temperature and pressure as shown in the graph:

image

In 1977, Clay and Medwin developed a model to estimate the speed of sound based on temperature, salinity, and pressure.

the speed of sound ($c$) can be estimated based on the presión hidrostatica ($p$), the temperature ($T$), and the salinity ($s$) using the following expression:

kyon

where $c_i$ are empirical constants.

Reference: "Study of Absorption loss effects on acoustic wave propagation in shallow water using different empirical Models", Yasin Yousif Al-Aboosi, Mustafa Sami Ahmed, Nor Shahida Mohd Shah, and Nor Hisham Haji Khamis, ARPN Journal of Engineering and Applied Sciences, Vol. 12, No. 22, November 2017.

La relaci n entre los ngulos de incidencia y refractados indicados en la siguiente gr fica

image=12672

se pueden escribir en funci n de la velocidad de la luz en cada medio c_i y c_e como

kyon


model

La relaci n entre los ngulos de incidencia y refractados indicados en la siguiente gr fica

image=12672

se pueden escribir en funci n de la velocidad de la luz en cada medio c_i y c_e como

kyon

In 1977, Clay and Medwin developed a model to estimate the speed of sound based on temperature, salinity, and pressure.

the speed of sound ($c$) can be estimated based on the presión hidrostatica ($p$), the temperature ($T$), and the salinity ($s$) using the following expression:

kyon

where $c_i$ are empirical constants.

Reference: "Study of Absorption loss effects on acoustic wave propagation in shallow water using different empirical Models", Yasin Yousif Al-Aboosi, Mustafa Sami Ahmed, Nor Shahida Mohd Shah, and Nor Hisham Haji Khamis, ARPN Journal of Engineering and Applied Sciences, Vol. 12, No. 22, November 2017.

In 1977, Clay and Medwin developed a model to estimate the speed of sound based on temperature, salinity, and pressure.

the speed of sound ($c$) can be estimated based on the presión hidrostatica ($p$), the temperature ($T$), and the salinity ($s$) using the following expression:

kyon

where $c_i$ are empirical constants.

Reference: "Study of Absorption loss effects on acoustic wave propagation in shallow water using different empirical Models", Yasin Yousif Al-Aboosi, Mustafa Sami Ahmed, Nor Shahida Mohd Shah, and Nor Hisham Haji Khamis, ARPN Journal of Engineering and Applied Sciences, Vol. 12, No. 22, November 2017.

A wave of the photon frequency ($\nu$) is related to ERROR:8439 through the speed of Light ($c$), according to the following formula:

kyon

This formula corresponds to the mechanical relationship stating that the speed of a wave is equal to its wavelength (distance traveled) divided by the period of oscillation, or equivalently, directly proportional to the frequency (the inverse of the period).

A wave of the photon frequency ($\nu$) is related to ERROR:8439 through the speed of Light ($c$), according to the following formula:

kyon

This formula corresponds to the mechanical relationship stating that the speed of a wave is equal to its wavelength (distance traveled) divided by the period of oscillation, or equivalently, directly proportional to the frequency (the inverse of the period).


>Model

ID:(1548, 0)