Practical

Storyboard

>Model

ID:(63, 0)



Practical

Storyboard

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$V$
V
Angle of the Balance
V
$F_m$
F_m
Average Force
N
$m_c$
m_c
Balance Maximum Angle
$x_c$
x_c
Calculations of the Times
s
$b$
b
Constant of the Regression
N
$b_c$
b_c
Constante Fuerza vs Voltaje $(b_c)$
N
$f$
f
Contribution of Force by Head
N
$E$
E
Energy Consumed
J
$e_m$
e_m
Energy consumed per Molecule Head
J
$F_f$
F_f
Final Force
N
$F$
F
Force that is generating the Muscle
N
$F_m$
F_m
Fuerza Media $(F_m)$
N
$F_i$
F_i
Initial Force
N
$V_{max}$
V_max
Maximum Angle
V
$F_{max}$
F_max
Maximum Force
N
$F_{min}$
F_min
Measured Angle
N
$N_L$
N_L
Microfibrils Number
-
$V_{min}$
V_min
Minimum Angle
V
$P$
P
Muscle Power
W
$N_f$
N_f
Number of Fibers
-
$N_m$
N_m
Number of Myofilaments
-
$N_s$
N_s
Number of Sarcomeres
-
$t$
t
Reaction Time for the Force
s
$b_2$
b_2
Second Constant of the Regression
N
$m_2$
m_2
Second Slope of the Regression
$m$
m
Slope of the Regression
$\tau$
tau
Time for Action of the Molecule Head
s
$N_t$
N_t
Total Number of Molecule Heads
-
$r$
r
Working Factor
-

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

\phi_{max}=2\pi+\theta_{min}-\theta_{max}

F_m=\displaystyle\frac{1}{2}(F_i+F_f)

\phi=2\pi+\theta_{min}-\theta

t_c=-\displaystyle\frac{b'-b}{m'-m}

En caso de que las fuerzas varian en forma lienal de un valor $F_1$ a un valor $F_2$ la fuerza media ser

$F_m=\displaystyle\frac{1}{2}(F_1+F_2)$

F_{max}=N_fN_LN_mN_trf

$E=N_se_m\displaystyle\frac{F}{f}\displaystyle\frac{t}{\tau}$

$P=e_m\displaystyle\frac{F}{f}\displaystyle\frac{N_s}{\tau}$


>Model

ID:(63, 0)