Efecto de la Viscosidad

Storyboard

>Model

ID:(328, 0)



Viscosity and Tension

Image

ID:(1895, 0)



Deformation of Platelet

Image

ID:(1695, 0)



Efecto de la Viscosidad

Model

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\eta_{fl}$
eta_fl
Blood Viscosity due the Fahraeus-Lindqvist Effect
Pa s
$\eta_d$
eta_d
Blood Viscosity of Deformed Erythrocytes
Pa s
$R$
R
Capillary Radio
m
$Ht$
Ht
Concentration of Haemocytes
-
$C_{\sigma}$
C
Constant of Deformation of Erythrocytes
$r$
r
Cylinder radial position
m
$\Delta z$
Dz
Distance between surfaces
m
$dt$
dt
Infinitesimal Variation of Time
s
$d$
d
Layer Thickness due to the Fahraeus-Lindqvist Effect
m
$v_{max}$
v_max
Maximum flow rate
m/s
$\eta_n$
eta_n
Normal Blood Viscosity
Pa s
$\eta_p$
eta_p
Plasma Blood Viscosity
Pa s
$L_i$
L_i
Position at the beginning of the tube
m
$L_e$
L_e
Position at the end of the tube
m
$S$
S
Section
m^2
$\Delta v$
Dv
Speed difference between surfaces
m/s
$v$
v
Speed on a cylinder radio
m/s
$\Delta L$
DL
Tube length
m
$R$
R
Tube radius
m
$\Delta p$
Dp
Variación de la Presión
Pa
$d\sigma$
dsigma
Variation of Tension in the Bloodstream
Pa
$F_v$
F_v
Viscose force
N
$\eta$
eta
Viscosity
Pa s
$J_V$
J_V
Volume flow
m^3/s

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations

If we consider the profile of ERROR:5449,0 for a fluid in a cylindrical channel, where the speed on a cylinder radio ($v$) varies with respect to ERROR:10120,0 according to the following expression:

$ v = v_{max} \left(1-\displaystyle\frac{ r ^2}{ R ^2}\right)$



involving the tube radius ($R$) and the maximum flow rate ($v_{max}$). We can calculate the maximum flow rate ($v_{max}$) using the viscosity ($\eta$), the pressure difference ($\Delta p$), and the tube length ($\Delta L$) as follows:

$ v_{max} =-\displaystyle\frac{ R ^2}{4 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$



If we integrate the velocity across the cross-section of the channel, we obtain the volume flow ($J_V$), defined as the integral of $\pi r v(r)$ with respect to ERROR:10120,0 from $0$ to ERROR:5417,0. This integral can be simplified as follows:

$J_V=-\displaystyle\int_0^Rdr \pi r v(r)=-\displaystyle\frac{R^2}{4\eta}\displaystyle\frac{\Delta p}{\Delta L}\displaystyle\int_0^Rdr \pi r \left(1-\displaystyle\frac{r^2}{R^2}\right)$



The integration yields the resulting Hagen-Poiseuille law:

$ J_V =-\displaystyle\frac{ \pi R ^4}{8 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$

(ID 3178)

As the viscous force is

$ F_v =- S \eta \displaystyle\frac{ \Delta v }{ \Delta z }$



and the surface area of the cylinder is

$S=2\pi R L$



where $R$ is the radius and $L$ is the length of the channel, the viscous force can be expressed as

$ F_v =-2 \pi r \Delta L \eta \displaystyle\frac{ dv }{ dr }$

where $\eta$ represents the viscosity and $dv/dr$ is the velocity gradient between the wall and the flow.

(ID 3623)

When a the pressure difference ($\Delta p_s$) acts on a section with an area of $\pi R^2$, with the tube radius ($R$) as the curvature radio ($r$), it generates a force represented by:

$\pi r^2 \Delta p$



This force drives the liquid against viscous resistance, given by:

$ F_v =-2 \pi r \Delta L \eta \displaystyle\frac{ dv }{ dr }$



By equating these two forces, we obtain:

$\pi r^2 \Delta p = \eta 2\pi r \Delta L \displaystyle\frac{dv}{dr}$



Which leads to the equation:

$\displaystyle\frac{dv}{dr} = \displaystyle\frac{1}{2\eta}\displaystyle\frac{\Delta p}{\Delta L} r$



If we integrate this equation from a position defined by the curvature radio ($r$) to the edge where the tube radius ($R$) (taking into account that the velocity at the edge is zero), we can obtain the speed on a cylinder radio ($v$) as a function of the curvature radio ($r$):

$ v = v_{max} \left(1-\displaystyle\frac{ r ^2}{ R ^2}\right)$



Where:

$ v_{max} =-\displaystyle\frac{ R ^2}{4 \eta }\displaystyle\frac{ \Delta p }{ \Delta L }$



is the maximum flow rate ($v_{max}$) at the center of the flow.

(ID 3627)


Examples


ID:(328, 0)