Definiciones

Storyboard

Bases para comprender como se deriva e integra para comprender como en física se resuelven ecuaciones que se formulan con derivadas.

>Model

ID:(453, 0)



Derivative as Pending

Definition

ID:(621, 0)



Derived

Image

ID:(632, 0)



Definiciones

Description

Bases para comprender como se deriva e integra para comprender como en física se resuelven ecuaciones que se formulan con derivadas.

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

$\displaystyle\frac{df}{dx}=\displaystyle\frac{df}{du}\displaystyle\frac{du}{dx}$

(ID 3577)

$\farc{\partial}{\partial x}(cf)=c\farc{\partial f}{\partial x}$

(ID 3279)

$\displaystyle\frac{df}{dx}=\lim_{\epsilon\rightarrow 0}\displaystyle\frac{f(x+\epsilon)-f(x)}{\epsilon}$

(ID 3560)

$\displaystyle\frac{\partial f}{\partial x_i}=\lim_{\epsilon\rightarrow 0}\displaystyle\frac{f(x_1,x_2,\ldots,x_i+\epsilon,\ldots,x_n)-f(x_1,x_2,\ldots,x_i+\epsilon,\ldots,x_n)}{\epsilon}$

(ID 3278)

$\displaystyle\displaystyle\frac{d}{dx}\left(\displaystyle\displaystyle\frac{f}{g}\right)=\displaystyle\displaystyle\frac{\displaystyle\displaystyle\frac{df}{dx}g - f\displaystyle\displaystyle\frac{dg}{dx}}{g^2}$

(ID 3576)

(ID 632)

$\farc{\partial}{\partial x}(fg)=\farc{\partial f}{\partial x}g+f\farc{\partial g}{\partial x}$

(ID 3281)

$\farc{\partial}{\partial x}(f+g)=\farc{\partial f}{\partial x}+\farc{\partial g}{\partial x}$

(ID 3280)


ID:(453, 0)