Tiefe Zirkulationsströme
Storyboard 
Es gibt mehrere Punkte, an denen Strömungen von der ozeanischen Oberfläche in größere Tiefen führen und so eine tiefgehende Zirkulation erzeugen. Diese Zirkulation unterliegt der Corioliskraft, was zu Abweichungen und einigen Strömungen zur Oberfläche (Auftrieb) führt, die mit Oberflächenströmungen verbunden sind.
Das klassische Modell für diese Strömungen ist das von Stommel und Arons, das, obwohl einfach, die beobachteten unterschiedlichen Tiefenströmungen erklärt.
[1] Ocean Circulation Theory, Joseph Pedlosky, Springer 1998 (7.3 Stommel-Arons Theory: Abyssal Flow on the Sphere)
ID:(1623, 0)
Tiefe Zirkulationsströme
Storyboard 
Es gibt mehrere Punkte, an denen Strömungen von der ozeanischen Oberfläche in größere Tiefen führen und so eine tiefgehende Zirkulation erzeugen. Diese Zirkulation unterliegt der Corioliskraft, was zu Abweichungen und einigen Strömungen zur Oberfläche (Auftrieb) führt, die mit Oberflächenströmungen verbunden sind. Das klassische Modell für diese Strömungen ist das von Stommel und Arons, das, obwohl einfach, die beobachteten unterschiedlichen Tiefenströmungen erklärt. [1] Ocean Circulation Theory, Joseph Pedlosky, Springer 1998 (7.3 Stommel-Arons Theory: Abyssal Flow on the Sphere)
Variablen
Berechnungen
Berechnungen
Gleichungen
Da die Coriolis-Beschleunigung in x-Richtung ($a_{c,x}$) aus die Winkelgeschwindigkeit des Planeten ($\omega$), die Breitengrad ($\varphi$), die Geschwindigkeit y des Objekt ($v_y$) und die Geschwindigkeit z des Objekt ($v_z$) besteht:
und die Definition von der Coriolis-Faktor ($f$) lautet:
zus tzlich zur Einschr nkung der Bewegung auf der Oberfl che, wo:
$v_z = 0$
ergibt sich, dass die Coriolis-Beschleunigung in x-Richtung ($a_{c,x}$) ist:
Da die Coriolis-Beschleunigung in y-Richtung ($a_{c,y}$) aus die Winkelgeschwindigkeit des Planeten ($\omega$), die Geschwindigkeit x des Objekt ($v_x$) und die Breitengrad ($\varphi$) besteht:
und die Definition von der Coriolis-Faktor ($f$) lautet:
zus tzlich zur Einschr nkung der Bewegung auf der Oberfl che, wo gilt:
$v_z = 0$
f hrt dies dazu, dass die Coriolis-Beschleunigung in y-Richtung ($a_{c,y}$) folgenderma en ist:
Wenn wir typische Zeitskalen f r jede Dimension einf hren, k nnen wir die Coriolis-Beschleunigungen als Geschwindigkeiten geteilt durch ihre typischen Zeitskalen absch tzen, n mlich:
$v_i =a_i \Delta t_i$
mit
Somit erhalten wir:
$v_z=\beta R v_x\Delta t_z$
Auf der anderen Seite haben wir mit der Gleichung f r die
$v_x=\displaystyle\frac{v_y}{f\Delta t_y}$
Durch Ersetzen von
Bei einer Bewegung in Richtung x (Ost-West) entsteht die Coriolis-Beschleunigung in z-Richtung ($a_{c,z}$) mit die Geschwindigkeit x des Objekt ($v_x$), die Winkelgeschwindigkeit des Planeten ($\omega$) und die Breitengrad ($\varphi$):
Dies wird erg nzt durch die Coriolis-Beschleunigung an der Oberfläche in x-Richtung ($a_{c,x}$) (Ost-West) mit der Coriolis-Faktor ($f$) und die Geschwindigkeit y des Objekt ($v_y$):
und die Coriolis-Beschleunigung an der Oberfläche in y-Richtung ($a_{c,y}$) (Nord-S d) mit der Coriolis-Faktor ($f$) und die Geschwindigkeit x des Objekt ($v_x$), das definiert ist als:
Wo der Coriolis-Faktor ($f$) definiert ist als:
Deshalb k nnen wir der Coriolis-Beta-Faktor ($\beta$) einf hren, definiert als:
Dadurch erhalten wir:
In Analogie zu der Coriolis-Faktor ($f$), definiert mit die Breitengrad ($\varphi$) und die Winkelgeschwindigkeit des Planeten ($\omega$) als:
variiert der Faktor im Bogen $R\theta$, mit der Planetenradio ($R$) und die Breitengrad ($\varphi$) als Breitengrad, gem :
$\displaystyle\frac{\partial f}{\partial (R\varphi) }=\displaystyle\frac{ 2\omega\cos\varphi }{R}$
deshalb kann der Coriolis-Beta-Faktor ($\beta$) definiert werden als:
Beispiele
Die tiefere Zirkulation wird als thermohaline Zirkulation (THC) bezeichnet, da ihre Bewegung mit Variationen der Temperatur (thermo) und Salinit t (halin) verbunden ist. Um zu verstehen, wie dies geschieht, m ssen wir zun chst die Struktur des Systems beschreiben.
In vereinfachter Form kann der Ozean als ein System mit drei Schichten modelliert werden:
- Eine obere Schicht, in der die Wasserbewegung durch luftgetriebene Str mungen erzeugt wird.
- Eine mittlere Schicht, deren Bewegung durch Dichteunterschiede im Ozean verursacht wird, die auf Unterschiede in Temperatur und Salinit t zur ckzuf hren sind (thermohalin).
- Eine tiefe Schicht, die als ruhend angenommen werden kann.
Der Anstieg der Dichte in Richtung der Pole, wo das Wasser k lter ist, f hrt dazu, dass das Wasser buchst blich absinkt und eine Subduktion unterhalb der oberen Schicht erzeugt. Das folgende Diagramm fasst den beschriebenen Prozess zusammen:
Wenn wir den Globus betrachten, entsteht die thermohaline Zirkulation in der N he eines der Pole (Nord oder S d) durch Wasser, das aufgrund einer h heren Salinit t und niedrigeren Temperaturen zu sinken beginnt. Der Fluss dieser Zirkulation geht in Richtung des quators und erzeugt eine Aufw rtsbewegung, bei der Wasser teilweise aufsteigt und in Richtung des Pols flie t, um das absteigende Wasser zu ersetzen.
[1] Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world oceanI. Stationary planetary flow patterns on a sphere. ( ber die abyssale Zirkulation des Weltmeeres - I. Station re planetare Str mungsmuster auf einer Kugel.) Deep Sea Research (1953), 6(2), 140-154.
[2] Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world oceanII. An idealized model of the circulation pattern and amplitude in oceanic basins. ( ber die abyssale Zirkulation des Weltmeeres - II. Ein ideales Modell des Musters und der Amplitude der Zirkulation in ozeanischen Becken.) Deep Sea Research (1953), 6(3), 217-233.
Das Modell von Stommel und Arons [1], [2] betrachtet den Ozean als eine zweidimensionale Box mit Koordinaten auf den Achsen x und y. Speziell:
- Koordinaten auf der x-Achse: $x_w$ (Westen) und $x_e$ (Osten).
- Koordinaten auf der y-Achse: $y_s$ (S den) und $y_n$ (Norden).
Diese Koordinaten sind in folgender Grafik dargestellt:
[1] Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world oceanI. Stationary planetary flow patterns on a sphere. ( ber die abyssale Zirkulation des Weltmeeres - I. Station re planetare Str mungsmuster auf einer Kugel.) Deep Sea Research (1953), 6(2), 140-154.
[2] Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world oceanII. An idealized model of the circulation pattern and amplitude in oceanic basins. ( ber die abyssale Zirkulation des Weltmeeres - II. Ein ideales Modell des Musters und der Amplitude der Zirkulation in ozeanischen Becken.) Deep Sea Research (1953), 6(3), 217-233.
Jeder Schritt ist mit einer charakteristischen Zeit verbunden:
- Reisezeit mit dem Haupt-Fluss $\Delta t_y$
- Ablenkungszeit mit dem Verlust-Fluss $\Delta t_x$
- Auftriebszeit $\Delta t_z$
Jede charakteristische Zeit wird mit Geschwindigkeiten und Beschleunigungen entlang des zur ckgelegten Weges assoziiert:
- Mit dem Hauptfluss $v_y, a_y$.
- Mit dem Verlustfluss $v_x, a_x$.
- Mit der Aufw rtsbewegung $v_z, a_z$.
Im Allgemeinen l st die Anfangsgeschwindigkeit (
Der Verlustfluss ist nicht gleichm ig und verteilt sich entlang der Breitengrade, daher wird er entsprechend seines Abstands zur n rdlichsten Position modelliert. Somit ist er in n rdlichen Breitengraden null und maximal am s dlichen Rand des Rechtecks, in dem die Zirkulation modelliert wird:
Da der Verlustfluss nicht gleichm ig ist, ist auch die Auftriebsstr mung nicht gleichm ig. Innerhalb des gleichen Modells wird angenommen, dass die Auftriebsstr mung am stlichen Rand des Rechtecks, in dem die Zirkulation modelliert wird, maximal ist. hnlich wie beim Verlust wird eine lineare Beziehung angenommen:
In der Modellierung des Tiefenflusses sind vier Str mungen zu ber cksichtigen:
Der Hauptfluss $F_w$, der sich entlang des Meeresbodens bewegt.
Der Verlustfluss $F_i$, der aufgrund der Corioliskraft abgelenkt wird.
Der Auftriebsfluss $U_x$, der dem Anteil des Verlustflusses entspricht, der die Oberfl che erreicht.
Der Sinkfluss $S_0$, der aus den Oberfl chenstr mungen stammt und auch die zur ckgesunkenen Verluste einschlie t.
Die sogenannte Coriolis-Kraft spielt eine wesentliche Rolle in der Dynamik des Wassers an den Polen und beeinflusst, wie Wassermassen aufgrund von Temperatur- und Salinit tsunterschieden absteigen.
Bei der Analyse des Atlantischen Ozeans kann man eine Bewegung des Wassers vom Pol zum quator beobachten, die nach Westen abgelenkt wird. Dieses Ph nomen wird durch die Verz gerung im Vergleich zur Rotation des Planeten verursacht, wenn man von einer Zone geringerer Geschwindigkeit entlang der Breitengrade zu einer Zone h herer Geschwindigkeit bergeht. Dieses Verhalten kann mit der Coriolis-Gleichung f r die x-Richtung modelliert werden, die durch
In dieser Gleichung ist der Coriolis-Faktor
Die geografische Kontur des Kontinents erm glicht eine Bewegung in der x-Richtung (L ngengrad), was zu einer Beschleunigung in der y-Richtung (Breitengrad) f hrt. Diese kann mit
Diese Berechnung zeigt, dass in der N he des quators Verschiebungen auftreten, bei denen Wasser von der Hauptstr mung weg und nach Norden bewegt wird. Wenn wir die Beschleunigung in der z-Richtung (Tiefe) betrachten und ber cksichtigen, dass
Am Ende l sen Stommel und Arons [1], [2] das Modell und zeigen die wichtigsten Tiefenstr mungen, die weltweit existieren:
[1] Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world oceanI. Stationary planetary flow patterns on a sphere. ( ber die abyssale Zirkulation des Weltmeeres - I. Station re planetare Str mungsmuster auf einer Kugel.) Deep Sea Research (1953), 6(2), 140-154.
[2] Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world oceanII. An idealized model of the circulation pattern and amplitude in oceanic basins. ( ber die abyssale Zirkulation des Weltmeeres - II. Ein ideales Modell des Musters und der Amplitude der Zirkulation in ozeanischen Becken.) Deep Sea Research (1953), 6(3), 217-233.
Als Stommel und Arons [1], [2] ihr erstes Modell der thermohalinen Zirkulation entwickelten, unterteilten sie die verschiedenen Ozeane in Zonen mit definierter Auftriebsstr mung (nach oben zeigende Pfeile) und zwei Quellen, eine in der Arktis und eine andere in der Antarktis:
[1] Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world oceanI. Stationary planetary flow patterns on a sphere. ( ber die abyssale Zirkulation des Weltmeeres - I. Station re planetare Str mungsmuster auf einer Kugel.) Deep Sea Research (1953), 6(2), 140-154.
[2] Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world oceanII. An idealized model of the circulation pattern and amplitude in oceanic basins. ( ber die abyssale Zirkulation des Weltmeeres - II. Ein ideales Modell des Musters und der Amplitude der Zirkulation in ozeanischen Becken.) Deep Sea Research (1953), 6(3), 217-233.
Messungen haben gezeigt, dass die thermohaline Zirkulation ein integriertes System ist, das den gesamten Globus umspannt. Es gibt mindestens zwei Punkte, die als Quellen betrachtet werden k nnen, und ihr Verlauf erstreckt sich ber alle Ozeane.
Durch mehrere Simulationen werden die Auswirkungen der polaren Eisschmelze auf das Absinken und dessen Einfluss auf die Tiefenzirkulation untersucht. Es gibt Anzeichen daf r, dass die Zirkulation bereits r ckl ufig ist. Ein Zusammenbruch der Tiefenzirkulation bedeutet jedoch nicht zwangsl ufig dasselbe f r die Oberfl chenzirkulation, die durch Winde angetrieben wird. Was passieren k nnte, ist eine Verschiebung in der Oberfl chenzirkulation, was zu einer Verringerung des Beitrags des Golfstroms an warmem Wasser f r Nordeuropa f hrt.
Das folgende Diagramm zeigt Variationen im Fluss in Einheiten von Sv (Sverdrup), was etwa $10^6,m^3/s$ entspricht:
Unter der Annahme einer Absinkrate von etwa 20 Sv l sst sich schlussfolgern, dass in einigen Simulationen die Tiefenzirkulation zum Stillstand kommt. Diese Variationen sind mit verschiedenen zuk nftigen Szenarien menschlicher Aktivit ten und berlegungen zu Aspekten verbunden, bei denen es weniger Gewissheit ber ihr Eintreten gibt. Detailliertere Informationen finden sich in den Berichten des Intergovernmental Panel on Climate Change (IPCC).
Bei der Modellierung des Nordatlantiks als eine Box mit einem Koordinatensystem nahe dem quator und in der Karibik-Region wird die Breite der Box berechnet, indem die westliche Position von der stlichen Position abgezogen wird:
Bei der Modellierung des Nordatlantiks als eine Box mit einem Koordinatensystem nahe dem quator und in der Karibik-Region wird die H he der Box berechnet, indem die s dliche Position von der n rdlichen Position abgezogen wird:
Analog zum Coriolis-Faktor k nnen wir untersuchen, wie sich der Faktor entlang des Bogens ndert, was uns dazu f hrt, der Coriolis-Beta-Faktor ($\beta$) zu erhalten, gegeben durch die Breitengrad ($\varphi$), der Planetenradio ($R$) und die Winkelgeschwindigkeit des Planeten ($\omega$) mittels:
Basierend auf der Beziehung zwischen der Coriolis-Beschleunigung und den Geschwindigkeiten in jedem Achsenbereich k nnen wir die Beschleunigung des Auftriebs absch tzen, die in der Zirkulation auftreten wird. Unter Verwendung der Parametrisierung, die von der Sektorgr e und der Breitengradlage abh ngt, erhalten wir die Coriolis-Beschleunigung in z-Richtung ($a_{c,z}$) als Funktion von der Coriolis-Beta-Faktor ($\beta$), der Planetenradio ($R$) und die Parallelgeschwindigkeit ($v_x$):
Da sich die Coriolis-Beschleunigung in x-Richtung ($a_{c,x}$) mit der Coriolis-Faktor ($f$) umschreiben l sst und unter der Bedingung, dass es keine vertikale Bewegung gibt:
$v_z = 0$
ergibt sich, dass die Coriolis-Beschleunigung an der Oberfläche in x-Richtung ($a_{c,x}$) lautet:
Da sich die Coriolis-Beschleunigung in x-Richtung ($a_{c,x}$) unter der Bedingung, dass keine vertikale Bewegung vorhanden ist, mit der Coriolis-Faktor ($f$) umschreiben l sst:
$v_z = 0$
Folglich ergibt sich, dass die Coriolis-Beschleunigung an der Oberfläche in y-Richtung ($a_{c,y}$) ist:
Die Bewegung entlang eines Breitengrads infolge der Erdrotation erzeugt eine Coriolis-Beschleunigung die Coriolis-Beschleunigung an der Oberfläche in y-Richtung ($a_{c,y}$), die in der Charakteristische Zeitintervallbewegung in $y$ ($\Delta t_y$) zu die Geschwindigkeit im Meridian ($v_y$) f hrt gem :
Die Auftriebsxadgeschwindigkeit die Auftriebsgeschwindigkeit ($v_z$) wird durch die Coriolis-Beschleunigung in z-Richtung ($a_{c,z}$) in Abh ngigkeit von der Charakteristische Zeitintervallbewegung in $z$ ($\Delta t_z$) bestimmt:
Um die Gleichungen zu vereinfachen, arbeiten wir mit ein Coriolis-Faktor ($f$), was eine Konstante f r den physischen Ort ist, da es die Winkelgeschwindigkeit des Planeten ($\omega$) f r die Erde und die Breitengrad ($\varphi$) f r den Ort einschlie t:
Im s dlichen Hemisph re ist die Breitengrade negativ, und damit 8600, was erkl rt, warum Systeme sich in die entgegengesetzte Richtung zum n rdlichen Hemisph re drehen.
Die Zirkulation des Flusses bewirkt, dass die Parallelgeschwindigkeit ($v_x$) in einem negativen Wirbel eine hnliche Gr e wie die Geschwindigkeit im Meridian ($v_y$) annimmt:
Die Kontinuit t des Flusses erm glicht es uns festzustellen, wie die Geschwindigkeiten in jeder Phase miteinander zusammenh ngen. Auf diese Weise k nnen wir die Auftriebsgeschwindigkeit ($v_z$) basierend auf der Coriolis-Beta-Faktor ($\beta$), der Coriolis-Faktor ($f$), der Charakteristische Zeitintervallbewegung in $y$ ($\Delta t_y$), der Charakteristische Zeitintervallbewegung in $z$ ($\Delta t_z$), der Planetenradio ($R$) und die Geschwindigkeit im Meridian ($v_y$) absch tzen:
Da die Aufw rtsstr mungsgeschwindigkeit durch
und die Beziehung zwischen den Zeiten gem
die Geschwindigkeit am Boden ist durch
Die Auftriebsstr mung h ngt von der Geschwindigkeit in Richtung Oberfl che und der Position in der Box ab. Da sie in Richtung quator gr er ist und ber die Breite relativ gleichm ig verteilt ist, wird sie nur mit dem Abstand zur n rdlichen Kante der Box modelliert:
$y_n - y$
Daher ergibt sich mit
Die Aufw rtsstr mungsgeschwindigkeit wird mit dem Wert
Der Fluss innerhalb der Box kann mit der Gleichung
modelliert werden.
Insbesondere wird festgestellt, dass die Aufw rtsstr mungsgeschwindigkeit zum westlichen Rand hin h her ist, was mit
dargestellt werden kann.
Die Anwesenheit des Faktors 2 im Modell ber cksichtigt, dass ein Durchschnitt unter Ber cksichtigung des vorhandenen Gradienten gebildet wird.
Die Zeit in Richtung
Die Erhaltung des Flusses impliziert, dass der entlang der Ostk ste Amerikas flie ende Fluss, dargestellt durch $T_w$, und die aufsteigenden Komponenten, dargestellt durch $U_x$, anf nglich durch das absinkende Volumen, gekennzeichnet als $S_0$, sowie durch die Zirkulation durch Aufw rtsbewegung erzeugt werden. Daher k nnen wir es wie folgt ausdr cken:
In diesem Fall gibt es zwei Arten von Str mungen: Oberfl chenstr mung und Str mung in Richtung oder aus der Tiefe. Durch Erhaltung k nnen wir annehmen, dass der Gesamtfluss, der in Richtung der Tiefe am Punkt S_0 flie t, dem Gesamtfluss entsprechen sollte, der durch die Auftriebsstr mung erzeugt wird. Letztere tritt ber die gesamte Oberfl che auf und mit vertikaler Geschwindigkeit, daher:
Wenn die Geschwindigkeit mit
mit der H he
$T_i \sim v_y H \Delta x$
Also ist der Fluss mit
Unter Ber cksichtigung der Bilanzgleichung mit
und dem Beitrag der Quelle mit
sowie dem Hintergrundfluss mit
und der Auftriebsstr mung mit
nehmen wir an, dass die Zone den quator erreicht (
Da der Coriolis-Faktor mit
kann er in Bezug zum Beta-Faktor in Abh ngigkeit von seiner Variation um eine Position gebracht werden. Dies liegt daran, dass wir im Taylor-Entwicklung erhalten:
$f \sim f_0 + \frac{df}{dy}y$
wobei die Ableitung ist:
$\frac{df}{dy} = 2\omega\cos\theta = \beta$
Somit ergibt sich mit
Mit
als
unter Verwendung von
ID:(1623, 0)
