Benützer:


Tiefe Zirkulationsströme

Storyboard

Es gibt mehrere Punkte, an denen Strömungen von der ozeanischen Oberfläche in größere Tiefen führen und so eine tiefgehende Zirkulation erzeugen. Diese Zirkulation unterliegt der Corioliskraft, was zu Abweichungen und einigen Strömungen zur Oberfläche (Auftrieb) führt, die mit Oberflächenströmungen verbunden sind.

Das klassische Modell für diese Strömungen ist das von Stommel und Arons, das, obwohl einfach, die beobachteten unterschiedlichen Tiefenströmungen erklärt.

[1] Ocean Circulation Theory, Joseph Pedlosky, Springer 1998 (7.3 Stommel-Arons Theory: Abyssal Flow on the Sphere)

>Modell

ID:(1623, 0)



Tiefe Zirkulationsströme

Storyboard

Es gibt mehrere Punkte, an denen Strömungen von der ozeanischen Oberfläche in größere Tiefen führen und so eine tiefgehende Zirkulation erzeugen. Diese Zirkulation unterliegt der Corioliskraft, was zu Abweichungen und einigen Strömungen zur Oberfläche (Auftrieb) führt, die mit Oberflächenströmungen verbunden sind. Das klassische Modell für diese Strömungen ist das von Stommel und Arons, das, obwohl einfach, die beobachteten unterschiedlichen Tiefenströmungen erklärt. [1] Ocean Circulation Theory, Joseph Pedlosky, Springer 1998 (7.3 Stommel-Arons Theory: Abyssal Flow on the Sphere)

Variablen

Symbol
Text
Variable
Wert
Einheiten
Berechnen
MKS-Wert
MKS-Einheiten
$v_z$
v_z
Auftriebsgeschwindigkeit
m/s
$\varphi$
phi
Breitengrad
rad
$\Delta t_y$
Dt_y
Charakteristische Zeitintervallbewegung in $y$
s
$\Delta t_z$
Dt_z
Charakteristische Zeitintervallbewegung in $z$
s
$a_{c,x}$
a_cx
Coriolis-Beschleunigung an der Oberfläche in x-Richtung
m/s^2
$a_{c,y}$
a_cy
Coriolis-Beschleunigung an der Oberfläche in y-Richtung
m/s^2
$a_{c,z}$
a_cz
Coriolis-Beschleunigung in z-Richtung
m/s^2
$\beta$
beta
Coriolis-Beta-Faktor
rad/s m
$f$
f
Coriolis-Faktor
rad/s
$H$
H
Durchschnittliche Fließhöhe
m
$U_x$
U_x
Durchschnittlicher Auftrieb nach Breitengrad
m^3/s
$x_e$
x_e
Entfernung Ostrand und Greenwich-Meridian
m
$x_w$
x_w
Entfernung Westrand und Greenwich-Meridian
m
$y_n$
y_n
Entfernung Äquator Nordkante
m
$y_s$
y_s
Entfernung Äquator Südkante
m
$\Delta x$
Dx
Gehäusebreite des Stommel- und Arons-Modells
m
$\Delta y$
Dy
Gehäuselänge des Stommel- und Arons-Modells
m
$v_y$
v_y
Geschwindigkeit im Meridian
m/s
$T_i$
T_i
Hauptstrom
m^3/s
$x$
x
Längengradposition
m
$v_x$
v_x
Parallelgeschwindigkeit
m/s
$R$
R
Planetenradio
m
$y$
y
Position im Breitengrad
m
$f_0$
f_0
Referenz-Coriolis-Faktor
rad/s
$v_{zx}$
v_zx
Velocidad de surgencia por meridiano
m/s
$T_w$
T_w
Verlustfluss
m^3/s
$\omega$
omega
Winkelgeschwindigkeit des Planeten
rad/s
$S_0$
S_0
Zufluss
m^3/s

Berechnungen


Zuerst die Gleichung auswählen:   zu ,  dann die Variable auswählen:   zu 

Symbol
Gleichung
Gelöst
Übersetzt

Berechnungen

Symbol
Gleichung
Gelöst
Übersetzt

 Variable   Gegeben   Berechnen   Ziel :   Gleichung   Zu verwenden



Gleichungen

Da die Coriolis-Beschleunigung in x-Richtung ($a_{c,x}$) aus die Winkelgeschwindigkeit des Planeten ($\omega$), die Breitengrad ($\varphi$), die Geschwindigkeit y des Objekt ($v_y$) und die Geschwindigkeit z des Objekt ($v_z$) besteht:

equation=11694

und die Definition von der Coriolis-Faktor ($f$) lautet:

equation=11697

zus tzlich zur Einschr nkung der Bewegung auf der Oberfl che, wo:

$v_z = 0$



ergibt sich, dass die Coriolis-Beschleunigung in x-Richtung ($a_{c,x}$) ist:

equation

Da die Coriolis-Beschleunigung in y-Richtung ($a_{c,y}$) aus die Winkelgeschwindigkeit des Planeten ($\omega$), die Geschwindigkeit x des Objekt ($v_x$) und die Breitengrad ($\varphi$) besteht:

equation=11695

und die Definition von der Coriolis-Faktor ($f$) lautet:

equation=11697

zus tzlich zur Einschr nkung der Bewegung auf der Oberfl che, wo gilt:

$v_z = 0$



f hrt dies dazu, dass die Coriolis-Beschleunigung in y-Richtung ($a_{c,y}$) folgenderma en ist:

equation

Wenn wir typische Zeitskalen f r jede Dimension einf hren, k nnen wir die Coriolis-Beschleunigungen als Geschwindigkeiten geteilt durch ihre typischen Zeitskalen absch tzen, n mlich:

$v_i =a_i \Delta t_i$



mit i=x,y,z. F r die z-Komponente haben wir gem list=12104:

equation=12104

Somit erhalten wir:

$v_z=\beta R v_x\Delta t_z$



Auf der anderen Seite haben wir mit der Gleichung f r die x-Komponente der Coriolis-Beschleunigung, gegeben durch list=11699, falls wir das Vorzeichen vernachl ssigen:

$v_x=\displaystyle\frac{v_y}{f\Delta t_y}$



Durch Ersetzen von v_x in dieser vorherigen Gleichung erhalten wir mit list:

equation

Bei einer Bewegung in Richtung x (Ost-West) entsteht die Coriolis-Beschleunigung in z-Richtung ($a_{c,z}$) mit die Geschwindigkeit x des Objekt ($v_x$), die Winkelgeschwindigkeit des Planeten ($\omega$) und die Breitengrad ($\varphi$):

equation=11696

Dies wird erg nzt durch die Coriolis-Beschleunigung an der Oberfläche in x-Richtung ($a_{c,x}$) (Ost-West) mit der Coriolis-Faktor ($f$) und die Geschwindigkeit y des Objekt ($v_y$):

equation=11698

und die Coriolis-Beschleunigung an der Oberfläche in y-Richtung ($a_{c,y}$) (Nord-S d) mit der Coriolis-Faktor ($f$) und die Geschwindigkeit x des Objekt ($v_x$), das definiert ist als:

equation=11699

Wo der Coriolis-Faktor ($f$) definiert ist als:

equation=11697

Deshalb k nnen wir der Coriolis-Beta-Faktor ($\beta$) einf hren, definiert als:

equation=12105

Dadurch erhalten wir:

equation

In Analogie zu der Coriolis-Faktor ($f$), definiert mit die Breitengrad ($\varphi$) und die Winkelgeschwindigkeit des Planeten ($\omega$) als:

equation=11697

variiert der Faktor im Bogen $R\theta$, mit der Planetenradio ($R$) und die Breitengrad ($\varphi$) als Breitengrad, gem :

$\displaystyle\frac{\partial f}{\partial (R\varphi) }=\displaystyle\frac{ 2\omega\cos\varphi }{R}$



deshalb kann der Coriolis-Beta-Faktor ($\beta$) definiert werden als:

equation


Beispiele


mechanisms

Die tiefere Zirkulation wird als thermohaline Zirkulation (THC) bezeichnet, da ihre Bewegung mit Variationen der Temperatur (thermo) und Salinit t (halin) verbunden ist. Um zu verstehen, wie dies geschieht, m ssen wir zun chst die Struktur des Systems beschreiben.

In vereinfachter Form kann der Ozean als ein System mit drei Schichten modelliert werden:

- Eine obere Schicht, in der die Wasserbewegung durch luftgetriebene Str mungen erzeugt wird.
- Eine mittlere Schicht, deren Bewegung durch Dichteunterschiede im Ozean verursacht wird, die auf Unterschiede in Temperatur und Salinit t zur ckzuf hren sind (thermohalin).
- Eine tiefe Schicht, die als ruhend angenommen werden kann.

Der Anstieg der Dichte in Richtung der Pole, wo das Wasser k lter ist, f hrt dazu, dass das Wasser buchst blich absinkt und eine Subduktion unterhalb der oberen Schicht erzeugt. Das folgende Diagramm fasst den beschriebenen Prozess zusammen:

image

Wenn wir den Globus betrachten, entsteht die thermohaline Zirkulation in der N he eines der Pole (Nord oder S d) durch Wasser, das aufgrund einer h heren Salinit t und niedrigeren Temperaturen zu sinken beginnt. Der Fluss dieser Zirkulation geht in Richtung des quators und erzeugt eine Aufw rtsbewegung, bei der Wasser teilweise aufsteigt und in Richtung des Pols flie t, um das absteigende Wasser zu ersetzen.

image

[1] Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world oceanI. Stationary planetary flow patterns on a sphere. ( ber die abyssale Zirkulation des Weltmeeres - I. Station re planetare Str mungsmuster auf einer Kugel.) Deep Sea Research (1953), 6(2), 140-154.

[2] Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world oceanII. An idealized model of the circulation pattern and amplitude in oceanic basins. ( ber die abyssale Zirkulation des Weltmeeres - II. Ein ideales Modell des Musters und der Amplitude der Zirkulation in ozeanischen Becken.) Deep Sea Research (1953), 6(3), 217-233.

Das Modell von Stommel und Arons [1], [2] betrachtet den Ozean als eine zweidimensionale Box mit Koordinaten auf den Achsen x und y. Speziell:

- Koordinaten auf der x-Achse: $x_w$ (Westen) und $x_e$ (Osten).
- Koordinaten auf der y-Achse: $y_s$ (S den) und $y_n$ (Norden).

Diese Koordinaten sind in folgender Grafik dargestellt:

image

[1] Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world oceanI. Stationary planetary flow patterns on a sphere. ( ber die abyssale Zirkulation des Weltmeeres - I. Station re planetare Str mungsmuster auf einer Kugel.) Deep Sea Research (1953), 6(2), 140-154.

[2] Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world oceanII. An idealized model of the circulation pattern and amplitude in oceanic basins. ( ber die abyssale Zirkulation des Weltmeeres - II. Ein ideales Modell des Musters und der Amplitude der Zirkulation in ozeanischen Becken.) Deep Sea Research (1953), 6(3), 217-233.

Jeder Schritt ist mit einer charakteristischen Zeit verbunden:

- Reisezeit mit dem Haupt-Fluss $\Delta t_y$
- Ablenkungszeit mit dem Verlust-Fluss $\Delta t_x$
- Auftriebszeit $\Delta t_z$

image

Jede charakteristische Zeit wird mit Geschwindigkeiten und Beschleunigungen entlang des zur ckgelegten Weges assoziiert:

- Mit dem Hauptfluss $v_y, a_y$.
- Mit dem Verlustfluss $v_x, a_x$.
- Mit der Aufw rtsbewegung $v_z, a_z$.

Im Allgemeinen l st die Anfangsgeschwindigkeit ($v_y$) ber die Corioliskraft die Beschleunigungen aus, die zu Verlust und Aufw rtsbewegung f hren.

image

Der Verlustfluss ist nicht gleichm ig und verteilt sich entlang der Breitengrade, daher wird er entsprechend seines Abstands zur n rdlichsten Position modelliert. Somit ist er in n rdlichen Breitengraden null und maximal am s dlichen Rand des Rechtecks, in dem die Zirkulation modelliert wird:

image

Da der Verlustfluss nicht gleichm ig ist, ist auch die Auftriebsstr mung nicht gleichm ig. Innerhalb des gleichen Modells wird angenommen, dass die Auftriebsstr mung am stlichen Rand des Rechtecks, in dem die Zirkulation modelliert wird, maximal ist. hnlich wie beim Verlust wird eine lineare Beziehung angenommen:

image

In der Modellierung des Tiefenflusses sind vier Str mungen zu ber cksichtigen:

Der Hauptfluss $F_w$, der sich entlang des Meeresbodens bewegt.
Der Verlustfluss $F_i$, der aufgrund der Corioliskraft abgelenkt wird.
Der Auftriebsfluss $U_x$, der dem Anteil des Verlustflusses entspricht, der die Oberfl che erreicht.
Der Sinkfluss $S_0$, der aus den Oberfl chenstr mungen stammt und auch die zur ckgesunkenen Verluste einschlie t.

image

Die sogenannte Coriolis-Kraft spielt eine wesentliche Rolle in der Dynamik des Wassers an den Polen und beeinflusst, wie Wassermassen aufgrund von Temperatur- und Salinit tsunterschieden absteigen.

image



Bei der Analyse des Atlantischen Ozeans kann man eine Bewegung des Wassers vom Pol zum quator beobachten, die nach Westen abgelenkt wird. Dieses Ph nomen wird durch die Verz gerung im Vergleich zur Rotation des Planeten verursacht, wenn man von einer Zone geringerer Geschwindigkeit entlang der Breitengrade zu einer Zone h herer Geschwindigkeit bergeht. Dieses Verhalten kann mit der Coriolis-Gleichung f r die x-Richtung modelliert werden, die durch list=11698 gegeben ist:

equation=11698



In dieser Gleichung ist der Coriolis-Faktor f auf der Nordhalbkugel positiv und auf der S dhalbkugel negativ, was dazu f hrt, dass die Str mung dazu neigt, sich dem amerikanischen Kontinent \'anzun hern\'.

Die geografische Kontur des Kontinents erm glicht eine Bewegung in der x-Richtung (L ngengrad), was zu einer Beschleunigung in der y-Richtung (Breitengrad) f hrt. Diese kann mit list=11699 berechnet werden:

equation=11699



Diese Berechnung zeigt, dass in der N he des quators Verschiebungen auftreten, bei denen Wasser von der Hauptstr mung weg und nach Norden bewegt wird. Wenn wir die Beschleunigung in der z-Richtung (Tiefe) betrachten und ber cksichtigen, dass \beta ebenfalls mit der Hemisph re das Vorzeichen ndert, ergibt sich ein positives Ergebnis. Mit anderen Worten, es wird eine Aufw rtsstr mung beobachtet, die mit list=12104 abgesch tzt werden kann:

equation=12104.

Am Ende l sen Stommel und Arons [1], [2] das Modell und zeigen die wichtigsten Tiefenstr mungen, die weltweit existieren:

image

[1] Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world oceanI. Stationary planetary flow patterns on a sphere. ( ber die abyssale Zirkulation des Weltmeeres - I. Station re planetare Str mungsmuster auf einer Kugel.) Deep Sea Research (1953), 6(2), 140-154.

[2] Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world oceanII. An idealized model of the circulation pattern and amplitude in oceanic basins. ( ber die abyssale Zirkulation des Weltmeeres - II. Ein ideales Modell des Musters und der Amplitude der Zirkulation in ozeanischen Becken.) Deep Sea Research (1953), 6(3), 217-233.

Als Stommel und Arons [1], [2] ihr erstes Modell der thermohalinen Zirkulation entwickelten, unterteilten sie die verschiedenen Ozeane in Zonen mit definierter Auftriebsstr mung (nach oben zeigende Pfeile) und zwei Quellen, eine in der Arktis und eine andere in der Antarktis:

image

[1] Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world oceanI. Stationary planetary flow patterns on a sphere. ( ber die abyssale Zirkulation des Weltmeeres - I. Station re planetare Str mungsmuster auf einer Kugel.) Deep Sea Research (1953), 6(2), 140-154.

[2] Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world oceanII. An idealized model of the circulation pattern and amplitude in oceanic basins. ( ber die abyssale Zirkulation des Weltmeeres - II. Ein ideales Modell des Musters und der Amplitude der Zirkulation in ozeanischen Becken.) Deep Sea Research (1953), 6(3), 217-233.

Messungen haben gezeigt, dass die thermohaline Zirkulation ein integriertes System ist, das den gesamten Globus umspannt. Es gibt mindestens zwei Punkte, die als Quellen betrachtet werden k nnen, und ihr Verlauf erstreckt sich ber alle Ozeane.

image

Durch mehrere Simulationen werden die Auswirkungen der polaren Eisschmelze auf das Absinken und dessen Einfluss auf die Tiefenzirkulation untersucht. Es gibt Anzeichen daf r, dass die Zirkulation bereits r ckl ufig ist. Ein Zusammenbruch der Tiefenzirkulation bedeutet jedoch nicht zwangsl ufig dasselbe f r die Oberfl chenzirkulation, die durch Winde angetrieben wird. Was passieren k nnte, ist eine Verschiebung in der Oberfl chenzirkulation, was zu einer Verringerung des Beitrags des Golfstroms an warmem Wasser f r Nordeuropa f hrt.

Das folgende Diagramm zeigt Variationen im Fluss in Einheiten von Sv (Sverdrup), was etwa $10^6,m^3/s$ entspricht:

image

Unter der Annahme einer Absinkrate von etwa 20 Sv l sst sich schlussfolgern, dass in einigen Simulationen die Tiefenzirkulation zum Stillstand kommt. Diese Variationen sind mit verschiedenen zuk nftigen Szenarien menschlicher Aktivit ten und berlegungen zu Aspekten verbunden, bei denen es weniger Gewissheit ber ihr Eintreten gibt. Detailliertere Informationen finden sich in den Berichten des Intergovernmental Panel on Climate Change (IPCC).


model

Bei der Modellierung des Nordatlantiks als eine Box mit einem Koordinatensystem nahe dem quator und in der Karibik-Region wird die Breite der Box berechnet, indem die westliche Position von der stlichen Position abgezogen wird:

kyon

Bei der Modellierung des Nordatlantiks als eine Box mit einem Koordinatensystem nahe dem quator und in der Karibik-Region wird die H he der Box berechnet, indem die s dliche Position von der n rdlichen Position abgezogen wird:

kyon

Analog zum Coriolis-Faktor k nnen wir untersuchen, wie sich der Faktor entlang des Bogens ndert, was uns dazu f hrt, der Coriolis-Beta-Faktor ($\beta$) zu erhalten, gegeben durch die Breitengrad ($\varphi$), der Planetenradio ($R$) und die Winkelgeschwindigkeit des Planeten ($\omega$) mittels:

kyon

Basierend auf der Beziehung zwischen der Coriolis-Beschleunigung und den Geschwindigkeiten in jedem Achsenbereich k nnen wir die Beschleunigung des Auftriebs absch tzen, die in der Zirkulation auftreten wird. Unter Verwendung der Parametrisierung, die von der Sektorgr e und der Breitengradlage abh ngt, erhalten wir die Coriolis-Beschleunigung in z-Richtung ($a_{c,z}$) als Funktion von der Coriolis-Beta-Faktor ($\beta$), der Planetenradio ($R$) und die Parallelgeschwindigkeit ($v_x$):

kyon

Da sich die Coriolis-Beschleunigung in x-Richtung ($a_{c,x}$) mit der Coriolis-Faktor ($f$) umschreiben l sst und unter der Bedingung, dass es keine vertikale Bewegung gibt:

$v_z = 0$



ergibt sich, dass die Coriolis-Beschleunigung an der Oberfläche in x-Richtung ($a_{c,x}$) lautet:

kyon

Da sich die Coriolis-Beschleunigung in x-Richtung ($a_{c,x}$) unter der Bedingung, dass keine vertikale Bewegung vorhanden ist, mit der Coriolis-Faktor ($f$) umschreiben l sst:

$v_z = 0$



Folglich ergibt sich, dass die Coriolis-Beschleunigung an der Oberfläche in y-Richtung ($a_{c,y}$) ist:

kyon

Die Bewegung entlang eines Breitengrads infolge der Erdrotation erzeugt eine Coriolis-Beschleunigung die Coriolis-Beschleunigung an der Oberfläche in y-Richtung ($a_{c,y}$), die in der Charakteristische Zeitintervallbewegung in $y$ ($\Delta t_y$) zu die Geschwindigkeit im Meridian ($v_y$) f hrt gem :

kyon

Die Auftriebsxadgeschwindigkeit die Auftriebsgeschwindigkeit ($v_z$) wird durch die Coriolis-Beschleunigung in z-Richtung ($a_{c,z}$) in Abh ngigkeit von der Charakteristische Zeitintervallbewegung in $z$ ($\Delta t_z$) bestimmt:

kyon

Um die Gleichungen zu vereinfachen, arbeiten wir mit ein Coriolis-Faktor ($f$), was eine Konstante f r den physischen Ort ist, da es die Winkelgeschwindigkeit des Planeten ($\omega$) f r die Erde und die Breitengrad ($\varphi$) f r den Ort einschlie t:

kyon

Im s dlichen Hemisph re ist die Breitengrade negativ, und damit 8600, was erkl rt, warum Systeme sich in die entgegengesetzte Richtung zum n rdlichen Hemisph re drehen.

Die Zirkulation des Flusses bewirkt, dass die Parallelgeschwindigkeit ($v_x$) in einem negativen Wirbel eine hnliche Gr e wie die Geschwindigkeit im Meridian ($v_y$) annimmt:

kyon

Die Kontinuit t des Flusses erm glicht es uns festzustellen, wie die Geschwindigkeiten in jeder Phase miteinander zusammenh ngen. Auf diese Weise k nnen wir die Auftriebsgeschwindigkeit ($v_z$) basierend auf der Coriolis-Beta-Faktor ($\beta$), der Coriolis-Faktor ($f$), der Charakteristische Zeitintervallbewegung in $y$ ($\Delta t_y$), der Charakteristische Zeitintervallbewegung in $z$ ($\Delta t_z$), der Planetenradio ($R$) und die Geschwindigkeit im Meridian ($v_y$) absch tzen:

kyon

Da die Aufw rtsstr mungsgeschwindigkeit durch list=12089 bestimmt wird,

equation=12089



und die Beziehung zwischen den Zeiten gem list=12123 erf llt sein muss, wobei die Geschwindigkeit

equation=12123



die Geschwindigkeit am Boden ist durch list gegeben als

kyon.

Die Auftriebsstr mung h ngt von der Geschwindigkeit in Richtung Oberfl che und der Position in der Box ab. Da sie in Richtung quator gr er ist und ber die Breite relativ gleichm ig verteilt ist, wird sie nur mit dem Abstand zur n rdlichen Kante der Box modelliert:

$y_n - y$



Daher ergibt sich mit list der Auftriebsfluss:

kyon

Die Aufw rtsstr mungsgeschwindigkeit wird mit dem Wert list=12085 bestimmt.

Der Fluss innerhalb der Box kann mit der Gleichung

equation=12085

modelliert werden.

Insbesondere wird festgestellt, dass die Aufw rtsstr mungsgeschwindigkeit zum westlichen Rand hin h her ist, was mit list durch

kyon

dargestellt werden kann.

Die Anwesenheit des Faktors 2 im Modell ber cksichtigt, dass ein Durchschnitt unter Ber cksichtigung des vorhandenen Gradienten gebildet wird.

Die Zeit in Richtung y ist mit der Bewegung entlang eines Meridians und somit mit dem Umfang/Radius der Erde verbunden. Die Zeit in Richtung z steht im Zusammenhang mit der Tiefe der Wasserschicht. Aufgrund der Massenerhaltung (Wasser) m ssen die Geschwindigkeiten hnlich sein, damit die Menge des aufsteigenden Wassers der Menge entspricht, die aus der Tiefenstr mung entfernt und ersetzt wird. Daher muss gelten, dass mit list:

kyon

Die Erhaltung des Flusses impliziert, dass der entlang der Ostk ste Amerikas flie ende Fluss, dargestellt durch $T_w$, und die aufsteigenden Komponenten, dargestellt durch $U_x$, anf nglich durch das absinkende Volumen, gekennzeichnet als $S_0$, sowie durch die Zirkulation durch Aufw rtsbewegung erzeugt werden. Daher k nnen wir es wie folgt ausdr cken:

kyon

In diesem Fall gibt es zwei Arten von Str mungen: Oberfl chenstr mung und Str mung in Richtung oder aus der Tiefe. Durch Erhaltung k nnen wir annehmen, dass der Gesamtfluss, der in Richtung der Tiefe am Punkt S_0 flie t, dem Gesamtfluss entsprechen sollte, der durch die Auftriebsstr mung erzeugt wird. Letztere tritt ber die gesamte Oberfl che auf und mit vertikaler Geschwindigkeit, daher:

kyon

Wenn die Geschwindigkeit mit list=12090 multipliziert wird:

equation=12090

mit der H he H und Breite \Delta x, ergibt sich der Fluss:

$T_i \sim v_y H \Delta x$



Also ist der Fluss mit list:

kyon

Unter Ber cksichtigung der Bilanzgleichung mit list=12087:

equation=12087



und dem Beitrag der Quelle mit list=12088, der lautet:

equation=12088



sowie dem Hintergrundfluss mit list=12091:

equation=12091



und der Auftriebsstr mung mit list=12085:

equation=12085



nehmen wir an, dass die Zone den quator erreicht (y_s\sim 0 und daher \Delta y = y_n-y_s\sim y_n). Damit ergibt sich mit list:

kyon

Da der Coriolis-Faktor mit list=11697 definiert ist:

equation=11697

kann er in Bezug zum Beta-Faktor in Abh ngigkeit von seiner Variation um eine Position gebracht werden. Dies liegt daran, dass wir im Taylor-Entwicklung erhalten:

$f \sim f_0 + \frac{df}{dy}y$



wobei die Ableitung ist:

$\frac{df}{dy} = 2\omega\cos\theta = \beta$



Somit ergibt sich mit list:

kyon

Mit list=12092 kann die Gleichung

equation=12092

als

equation=12093



unter Verwendung von list=12093 umgeschrieben werden.

kyon


>Modell

ID:(1623, 0)



Mechanismen

Definition


ID:(15584, 0)



Thermohaline Zirkulation

Bild

Die tiefere Zirkulation wird als thermohaline Zirkulation (THC) bezeichnet, da ihre Bewegung mit Variationen der Temperatur (thermo) und Salinität (halin) verbunden ist. Um zu verstehen, wie dies geschieht, müssen wir zunächst die Struktur des Systems beschreiben.

In vereinfachter Form kann der Ozean als ein System mit drei Schichten modelliert werden:

- Eine obere Schicht, in der die Wasserbewegung durch luftgetriebene Strömungen erzeugt wird.
- Eine mittlere Schicht, deren Bewegung durch Dichteunterschiede im Ozean verursacht wird, die auf Unterschiede in Temperatur und Salinität zurückzuführen sind (thermohalin).
- Eine tiefe Schicht, die als ruhend angenommen werden kann.

Der Anstieg der Dichte in Richtung der Pole, wo das Wasser kälter ist, führt dazu, dass das Wasser buchstäblich absinkt und eine Subduktion unterhalb der oberen Schicht erzeugt. Das folgende Diagramm fasst den beschriebenen Prozess zusammen:

ID:(12095, 0)



Thermohaline Zirkulation über dem Planeten

Notiz

Wenn wir den Globus betrachten, entsteht die thermohaline Zirkulation in der Nähe eines der Pole (Nord oder Süd) durch Wasser, das aufgrund einer höheren Salinität und niedrigeren Temperaturen zu sinken beginnt. Der Fluss dieser Zirkulation geht in Richtung des Äquators und erzeugt eine Aufwärtsbewegung, bei der Wasser teilweise aufsteigt und in Richtung des Pols fließt, um das absteigende Wasser zu ersetzen.

Darstellung des Nordatlantiks im Stommel- und Arons-Modell [1], [2]

[1] Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world oceanI. Stationary planetary flow patterns on a sphere. (Über die abyssale Zirkulation des Weltmeeres - I. Stationäre planetare Strömungsmuster auf einer Kugel.) Deep Sea Research (1953), 6(2), 140-154.

[2] Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world oceanII. An idealized model of the circulation pattern and amplitude in oceanic basins. (Über die abyssale Zirkulation des Weltmeeres - II. Ein ideales Modell des Musters und der Amplitude der Zirkulation in ozeanischen Becken.) Deep Sea Research (1953), 6(3), 217-233.

ID:(12096, 0)



Boxmodell

Zitat

Das Modell von Stommel und Arons [1], [2] betrachtet den Ozean als eine zweidimensionale Box mit Koordinaten auf den Achsen x und y. Speziell:

- Koordinaten auf der x-Achse: $x_w$ (Westen) und $x_e$ (Osten).
- Koordinaten auf der y-Achse: $y_s$ (Süden) und $y_n$ (Norden).

Diese Koordinaten sind in folgender Grafik dargestellt:

Atlantic-Box-Modell [1], [2].

[1] Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world oceanI. Stationary planetary flow patterns on a sphere. (Über die abyssale Zirkulation des Weltmeeres - I. Stationäre planetare Strömungsmuster auf einer Kugel.) Deep Sea Research (1953), 6(2), 140-154.

[2] Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world oceanII. An idealized model of the circulation pattern and amplitude in oceanic basins. (Über die abyssale Zirkulation des Weltmeeres - II. Ein ideales Modell des Musters und der Amplitude der Zirkulation in ozeanischen Becken.) Deep Sea Research (1953), 6(3), 217-233.

ID:(12082, 0)



Charakteristische Zeiten

Übung

Jeder Schritt ist mit einer charakteristischen Zeit verbunden:

- Reisezeit mit dem Haupt-Fluss $\Delta t_y$
- Ablenkungszeit mit dem Verlust-Fluss $\Delta t_x$
- Auftriebszeit $\Delta t_z$

ID:(13426, 0)



Geschwindigkeiten und Beschleunigungen pro Fluss

Gleichung

Jede charakteristische Zeit wird mit Geschwindigkeiten und Beschleunigungen entlang des zurückgelegten Weges assoziiert:

- Mit dem Hauptfluss $v_y, a_y$.
- Mit dem Verlustfluss $v_x, a_x$.
- Mit der Aufwärtsbewegung $v_z, a_z$.

Im Allgemeinen löst die Anfangsgeschwindigkeit ($v_y$) über die Corioliskraft die Beschleunigungen aus, die zu Verlust und Aufwärtsbewegung führen.

ID:(13427, 0)



Verlorene Strömungsgeometrie

Script

Der Verlustfluss ist nicht gleichmäßig und verteilt sich entlang der Breitengrade, daher wird er entsprechend seines Abstands zur nördlichsten Position modelliert. Somit ist er in nördlichen Breitengraden null und maximal am südlichen Rand des Rechtecks, in dem die Zirkulation modelliert wird:

ID:(13428, 0)



Auftriebsströmungsgeometrie

Variable

Da der Verlustfluss nicht gleichmäßig ist, ist auch die Auftriebsströmung nicht gleichmäßig. Innerhalb des gleichen Modells wird angenommen, dass die Auftriebsströmung am östlichen Rand des Rechtecks, in dem die Zirkulation modelliert wird, maximal ist. Ähnlich wie beim Verlust wird eine lineare Beziehung angenommen:

ID:(13429, 0)



Hauptflüsse tiefer Strömungen

Audio

In der Modellierung des Tiefenflusses sind vier Strömungen zu berücksichtigen:

Der Hauptfluss $F_w$, der sich entlang des Meeresbodens bewegt.
Der Verlustfluss $F_i$, der aufgrund der Corioliskraft abgelenkt wird.
Der Auftriebsfluss $U_x$, der dem Anteil des Verlustflusses entspricht, der die Oberfläche erreicht.
Der Sinkfluss $S_0$, der aus den Oberflächenströmungen stammt und auch die zurückgesunkenen Verluste einschließt.

ID:(13425, 0)



Unterwasserströmungen und Coriolis

Video

Die sogenannte Coriolis-Kraft spielt eine wesentliche Rolle in der Dynamik des Wassers an den Polen und beeinflusst, wie Wassermassen aufgrund von Temperatur- und Salinitätsunterschieden absteigen.



Bei der Analyse des Atlantischen Ozeans kann man eine Bewegung des Wassers vom Pol zum Äquator beobachten, die nach Westen abgelenkt wird. Dieses Phänomen wird durch die Verzögerung im Vergleich zur Rotation des Planeten verursacht, wenn man von einer Zone geringerer Geschwindigkeit entlang der Breitengrade zu einer Zone höherer Geschwindigkeit übergeht. Dieses Verhalten kann mit der Coriolis-Gleichung für die x-Richtung modelliert werden, die durch gegeben ist:



In dieser Gleichung ist der Coriolis-Faktor f auf der Nordhalbkugel positiv und auf der Südhalbkugel negativ, was dazu führt, dass die Strömung dazu neigt, sich dem amerikanischen Kontinent \'anzunähern\'.

Die geografische Kontur des Kontinents ermöglicht eine Bewegung in der x-Richtung (Längengrad), was zu einer Beschleunigung in der y-Richtung (Breitengrad) führt. Diese kann mit berechnet werden:



Diese Berechnung zeigt, dass in der Nähe des Äquators Verschiebungen auftreten, bei denen Wasser von der Hauptströmung weg und nach Norden bewegt wird. Wenn wir die Beschleunigung in der z-Richtung (Tiefe) betrachten und berücksichtigen, dass \beta ebenfalls mit der Hemisphäre das Vorzeichen ändert, ergibt sich ein positives Ergebnis. Mit anderen Worten, es wird eine Aufwärtsströmung beobachtet, die mit abgeschätzt werden kann:

.

ID:(12122, 0)



Stommel-Arons-Tiefenströmungen

Einheit

Am Ende lösen Stommel und Arons [1], [2] das Modell und zeigen die wichtigsten Tiefenströmungen, die weltweit existieren:

[1] Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world oceanI. Stationary planetary flow patterns on a sphere. (Über die abyssale Zirkulation des Weltmeeres - I. Stationäre planetare Strömungsmuster auf einer Kugel.) Deep Sea Research (1953), 6(2), 140-154.

[2] Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world oceanII. An idealized model of the circulation pattern and amplitude in oceanic basins. (Über die abyssale Zirkulation des Weltmeeres - II. Ein ideales Modell des Musters und der Amplitude der Zirkulation in ozeanischen Becken.) Deep Sea Research (1953), 6(3), 217-233.

ID:(12099, 0)



Struktur des Stommel-Arons-Modells

Code

Als Stommel und Arons [1], [2] ihr erstes Modell der thermohalinen Zirkulation entwickelten, unterteilten sie die verschiedenen Ozeane in Zonen mit definierter Auftriebsströmung (nach oben zeigende Pfeile) und zwei Quellen, eine in der Arktis und eine andere in der Antarktis:

Globales Zirkulationsmodell in Sv (Sverdrup) ($10^6 m^3/s$) [2].

[1] Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world oceanI. Stationary planetary flow patterns on a sphere. (Über die abyssale Zirkulation des Weltmeeres - I. Stationäre planetare Strömungsmuster auf einer Kugel.) Deep Sea Research (1953), 6(2), 140-154.

[2] Stommel, H., & Arons, A. B. (1960). On the abyssal circulation of the world oceanII. An idealized model of the circulation pattern and amplitude in oceanic basins. (Über die abyssale Zirkulation des Weltmeeres - II. Ein ideales Modell des Musters und der Amplitude der Zirkulation in ozeanischen Becken.) Deep Sea Research (1953), 6(3), 217-233.

ID:(12098, 0)



Echte thermohaline Zirkulation

Fluss

Messungen haben gezeigt, dass die thermohaline Zirkulation ein integriertes System ist, das den gesamten Globus umspannt. Es gibt mindestens zwei Punkte, die als Quellen betrachtet werden können, und ihr Verlauf erstreckt sich über alle Ozeane.

ID:(12097, 0)



Untersuchung des möglichen Zusammenbruchs der Tiefenströmung

Matrix

Durch mehrere Simulationen werden die Auswirkungen der polaren Eisschmelze auf das Absinken und dessen Einfluss auf die Tiefenzirkulation untersucht. Es gibt Anzeichen dafür, dass die Zirkulation bereits rückläufig ist. Ein Zusammenbruch der Tiefenzirkulation bedeutet jedoch nicht zwangsläufig dasselbe für die Oberflächenzirkulation, die durch Winde angetrieben wird. Was passieren könnte, ist eine Verschiebung in der Oberflächenzirkulation, was zu einer Verringerung des Beitrags des Golfstroms an warmem Wasser für Nordeuropa führt.

Das folgende Diagramm zeigt Variationen im Fluss in Einheiten von Sv (Sverdrup), was etwa $10^6,m^3/s$ entspricht:

Unter der Annahme einer Absinkrate von etwa 20 Sv lässt sich schlussfolgern, dass in einigen Simulationen die Tiefenzirkulation zum Stillstand kommt. Diese Variationen sind mit verschiedenen zukünftigen Szenarien menschlicher Aktivitäten und Überlegungen zu Aspekten verbunden, bei denen es weniger Gewissheit über ihr Eintreten gibt. Detailliertere Informationen finden sich in den Berichten des Intergovernmental Panel on Climate Change (IPCC).

ID:(13430, 0)



Modell

Html


ID:(15585, 0)