Balance

Storyboard

In a state of equilibrium the energy captured from the sun must necessarily be equal to that which the earth itself emits returned to space. The first comes primarily as visible radiation, heats the planet and this in turn emits as infrared radiation via the atmosphere returned to space.

>Model

ID:(537, 0)



Radiation balance model (D1+0)

Definition

![earth016](showImage.php)

earth016

ID:(3077, 0)



Equilibrio termodinámico

Image

En general el calor fluye desde los objetos de mayor temperatura a los de menor evolucionando asi las temperaturas de todos los elementos involucrados.

Si uno espera un tiempo suficiente los sistemas alcanzan un equilibrio térmico, es decir cada cuerpo esta recibiendo la misma cantidad de calor como entrega a su entrono. En esta situación las temperaturas permanecen constantes en el tiempo y se habla de que el sistema esta en equilibrio termodinámico.

ID:(9976, 0)



Numerical solution

Note

Las ecuaciones de balance radiativo

nos permiten calcular las temperaturas sobre la superficie de la tierra $T_e$, en la parte inferior de la atmosfera $T_b$ y en la parte superior $T_t$.

ID:(6866, 0)



Balance

Storyboard

In a state of equilibrium the energy captured from the sun must necessarily be equal to that which the earth itself emits returned to space. The first comes primarily as visible radiation, heats the planet and this in turn emits as infrared radiation via the atmosphere returned to space.

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$a_a$
a_a
Albedo of the earth's atmosphere
-
$a_e$
a_e
Albedo of the planet's surface
-
$\gamma_v$
g_v
Atmosphere coverage for VIS radiation
-
$I_p$
I_p
Average earth intensity
W/m^2
$\kappa_c$
k_c
Coefficient Convection
J/m^3K
$\epsilon$
e
Emissivity
-
$I_d$
I_d
Energy transmitted by conduction and evaporation
W/m^2
$\gamma_i$
g_i
Infrared Coverage
-
$I_b$
I_b
Infrared Intensity emitted by the Bottom of the Atmosphere
W/m^2
$I_t$
I_t
Infrared Intensity emitted by the Top of the Atmosphere
W/m^2
$I_e$
I_e
NIR intensity emitted by the earth
W/m^2
$I_{esa}$
I_esa
NIR intensity emitted by the earth to the atmosphere
W/m^2
$I_{sa}$
I_sa
Radiation Absorbed by the Clouds
W/m^2
$\sigma$
s
Stefan Boltzmann constant
J/m^2K^4s
$T_e$
T_e
Surface Temperature of the Earth
K
$T_b$
T_b
Temperature of the lower atmosphere
K
$T_t$
T_t
Temperature of the upper part of the atmosphere
K
$I_{ev}$
I_ev
VIS intensity absorbed by the ground
W/m^2

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

![earth016](showImage.php)

earth016

En general el calor fluye desde los objetos de mayor temperatura a los de menor evolucionando asi las temperaturas de todos los elementos involucrados.

Si uno espera un tiempo suficiente los sistemas alcanzan un equilibrio t rmico, es decir cada cuerpo esta recibiendo la misma cantidad de calor como entrega a su entrono. En esta situaci n las temperaturas permanecen constantes en el tiempo y se habla de que el sistema esta en equilibrio termodin mico.

The Earth\'s surface receives energy from the sun $I_{ev}$ and from the lower part of the atmosphere $I_b$. All of this energy is radiated as $I_e$ and lost through convection and conduction $I_d$ with:

kyon

Bajo condici n con list=9976 de

equation=9976



la ecuaci n de balance con list=4692

equation=4692



se puede reescribir con la radiaci n VIS absorbida por la superficie con list=4674

equation=4674



la radiaci n NIR recibida de la atm sfera con list=4679

equation=4679



la perdida por calor latente y convecci n con list=9692

equation=9692



y la emisi n NIR de la propia superficie con list=4676

equation=4676



como con list

equation

The energy balance equation for the lower part of the atmosphere includes the acquisition of energy through convection and conduction, denoted as $I_d$, as well as the radiation from the Earth\'s surface $I_{esa}$ and from the upper part of the atmosphere $I_t$. All of this energy is subsequently radiated by the lower part of the atmosphere $I_b$ towards both the upper atmosphere and the Earth\'s surface:

kyon

Bajo condici n con list=9976 de

equation=9976



la ecuaci n de balance con list=4693

equation=4693



se puede reescribir con la energ a del calor latente y convecci n recibida con list=9692

equation=9692



la radiaci n NIR recibida desde la superficie de la tierra con list=4684

equation=4684



la radiaci n NIR recibida desde la atm sfera superior con list=4680

equation=4680



y la radiaci n emitida tanto hacia la tierra como a la atm sfera superior con list=4679

equation=4679



con list como:

equation

The upper part of the atmosphere acquires energy through the absorption of solar energy $I_{sa}$ and from the lower part of the atmosphere $I_b$. Subsequently, this energy is radiated by the upper part $I_t$ both towards the lower part of the atmosphere and towards space:

kyon

Bajo condici n con list=9976 de

equation=9976



la ecuaci n de balance con list=4694

equation=4694



se puede reescribir con la radiaci n VIS absorbida por la atm sfera con list=4671

equation=4671



la radiaci n NIR recibida de la parte inferior de la atm sfera con list=4679

equation=4679



y la radiaci n NIR emitida hacia la parte inferior y al espacio con list=4680

equation=4680



como con list

equation

Las ecuaciones de balance radiativo

nos permiten calcular las temperaturas sobre la superficie de la tierra $T_e$, en la parte inferior de la atmosfera $T_b$ y en la parte superior $T_t$.


>Model

ID:(537, 0)