To process data
Storyboard 
The data that is collected is generally incomplete and with a structure that does not correspond to that of the epidemiological models.
ID:(1600, 0)
Data normally collected
Definition 
The data that is normally collected (WHO and governments in general) are numbers of:
• daily infected
• total infected (accumulated)
• daily dead
• total deaths (accumulated)
Additionally, the number of:
• total recovered (accumulated)
• tests performed
• infected asymptomatic
The numbers generally have problems of the type:
• delay in reporting both infected and dead
• no registry of infected asymptomatic or with mild symptoms
• no association of death with infection due to ignorance and / or lack of test
• deaths from other pathologies triggered by the infection
ID:(11884, 0)
To process data
Description 
The data that is collected is generally incomplete and with a structure that does not correspond to that of the epidemiological models.
Variables
Calculations
Calculations
Equations
(ID 11887)
(ID 11890)
(ID 11892)
(ID 11898)
Examples
The data that is normally collected (WHO and governments in general) are numbers of:
• daily infected
• total infected (accumulated)
• daily dead
• total deaths (accumulated)
Additionally, the number of:
• total recovered (accumulated)
• tests performed
• infected asymptomatic
The numbers generally have problems of the type:
• delay in reporting both infected and dead
• no registry of infected asymptomatic or with mild symptoms
• no association of death with infection due to ignorance and / or lack of test
• deaths from other pathologies triggered by the infection
(ID 11884)
Si
| $ J(t) =\displaystyle\int_0^t i(u) du $ |
(ID 11885)
Los modelos como el SIR consideran los infectados activos
| $ I(t) = k \displaystyle\int_0^t c(t-u) i(u) du $ |
El factor
(ID 11886)
Con el total de infectados definidos mediante
| $ J(t) =\displaystyle\int_0^t i(u) du $ |
el numero de infectados diarios se puede estimar diferenciando esta ecuaci n
| $ i = \dot{ J }$ |
(ID 11887)
Si el numero de infectados por d a es en primer orden constante entones la integral de
| $ I(t) = k \displaystyle\int_0^t c(t-u) i(u) du $ |
\\n\\nser del orden del numero de d as
$I = k \tau i$
Con la estimaci n del numero de infectados diarios
| $ i = \dot{ J }$ |
se tiene
| $ I = k \tau \dot{ J }$ |
(ID 11888)
Los susceptibles
| $ S = N - J $ |
(ID 11892)
Con la ecuaci n de los infectados del modelo SIR
| $\displaystyle\frac{dI}{dt}=\left(\displaystyle\frac{\beta C}{N}S-\gamma\right)I$ |
se puede reescribir con
| $ I = k \tau \dot{ J }$ |
y
| $ S = N - J $ |
con lo que se puede estimar
| $ \beta C = \displaystyle\frac{ \gamma + \displaystyle\frac{\ddot{J}}{\dot{J}}}{1-\displaystyle\frac{J}{N}}$ |
Importante es ver que los factor
(ID 11893)
Como el factor de reproducci n es
| $R_0=\displaystyle\frac{\beta C}{\gamma}$ |
se puede reescribir la ecuaci n
| $ \beta C = \displaystyle\frac{ \gamma + \displaystyle\frac{\ddot{J}}{\dot{J}}}{1-\displaystyle\frac{J}{N}}$ |
como
| $ R_0 = \displaystyle\frac{ 1 + \displaystyle\frac{1}{\gamma}\displaystyle\frac{\ddot{J}}{\dot{J}}}{1-\displaystyle\frac{J}{N}}$ |
en donde se asumi que el
(ID 11894)
Los resueltos (recuperados en la definici n de los modelos SIR) acumulados
| $ R = f D $ |
(ID 11890)
Con la ecuaci n para los resueltos del modelo SIR:
| $\displaystyle\frac{dR}{dt}=\gamma I$ |
se tiene con la relaci n
| $ R = f D $ |
y
| $ I = k \tau \dot{ J }$ |
que se puede estimar el par metro compuesto
| $ k = f \displaystyle\frac{ \dot{D} }{ \dot{J} } $ |
en donde se asumi que el
El factor
(ID 11891)
Para evitar las fluctuaciones de corto plazo se puede introducir una par bola local ajustada por m nimos cuadrados de la forma
| $ J = a t ^2 + b t + c$ |
en donde los factores se calculan de
| $ a =\displaystyle\frac{ S_{x2y} ( S_x ^2- S_{x2} N )- S_{x3} ( S_{xy} N - S_x S_y )- S_{x2} ^2 S_y + S_x S_{x2} S_{xy} )}{ S_{x4} ( S_{x2} N - S_x ^2)- S_{x3} ^2 N +2 S_x S_{x2} S_{x3} - S_{x2} ^3}$ |
| $ b =\displaystyle\frac{ S_{x4} ( S_{xy} N - S_x S_y )+ S_{x3} ( S_{x2} S_y - S_{x2y} N )- S_{x2} ^2 S_{xy} + S_x S_{x2} S_{x2y} }{ S_{x4} ( S_{x2} N - S_x ^2)- S_{x3} ^2 N +2 S_x S_{x2} S_{x3} - S_{x2} ^3}$ |
| $ c =\displaystyle\frac{ S_{x4} ( S_{x2} S_y - S_x S_{xy} )- S_{x3} ^2 S_y + S_{x3} ( S_{x2} S_{xy} + S_x S_{x2y} )- S_{x2} ^2 S_{x2y} }{ S_{x4} ( S_{x2} N - S_x ^2)- S_{x3} ^2 N +2 S_x S_{x2} S_{x3} - S_{x2} ^3}$ |
con
| $ S_{xnym} =\displaystyle\sum_i^N x_i ^n y_i ^m$ |
(ID 11896)
Si se asume que el numero acumulado es
| $ J = a t ^2 + b t + c$ |
entonces la primera derivada es
| $ \dot{J} = 2 a t + b$ |
(ID 11897)
Si se asume que el numero acumulado es
| $ J = a t ^2 + b t + c$ |
entonces la segunda derivada es
| $ \ddot{J} = 2 a $ |
(ID 11898)
ID:(1600, 0)
