Limite estacioanrio Membrana Basal sin Hatch
Beschreibung 
En el caso estacionario sin hatch no existe difusión perimetral y los flujos radiales totales tanto en la membrana basal como en la intermedia deben ser cero. Por ello se tiene que
$J_{e,k}-J_{e,k}=0$
y
$J_{a,k}-J_{n,k}=0$
Como
| $J_{e,k}=\displaystyle\frac{1}{\Delta s}\left(\displaystyle\frac{j_{1o}}{c_{1o}}\displaystyle\frac{N_l\Delta s}{\pi R_l^2}-\displaystyle\frac{j_{1i}}{c_{1i}}\displaystyle\frac{N_{e,k}}{d_e}\right)$ |
| $J_{a,k}=\displaystyle\frac{1}{\Delta s}\left(\displaystyle\frac{j_{1o}}{c_{1o}}\displaystyle\frac{N_{e,k}}{d_e}-\displaystyle\frac{j_{1i}}{c_{1i}}\displaystyle\frac{N_{a,k}}{d_a}\right)$ |
y
| $J_{n,k}=\displaystyle\frac{1}{\Delta s}\left(\displaystyle\frac{j_{3o}}{c_{3o}}\displaystyle\frac{N_{a,k}}{d_a}-\displaystyle\frac{j_{3i}}{c_{3i}}\displaystyle\frac{N_n}{d_n}\right)$ |
se tiene que el número de moleculas de glucosa en un largo $\Delta z$ es
| $N_{e,k}=\displaystyle\frac{N_nR_l^2c_{1i}c_{1o}c_{3o}d_ej_{1i}j_{3i}\pi+\Delta sN_lc_{1i}^2c_{3i}d_ed_nj_{1o}j_{3o}+\Delta sN_lc_{1i}c_{3i}c_{3o}d_ed_nj_{1i}j_{1o}}{j_{3o}(R_l^2c_{1i}^2c_{3i}d_nj_{1o}\pi+R_l^2c_{1i}c_{1o}c_{3i}d_nj_{1i}\pi)+R_l^2c_{1o}c_{3i}c_{3o}d_nj_{1i}^2\pi)}$ |
ID:(8548, 0)
Limite estacionario Membrana Intermedia sin Hatch
Beschreibung 
En el caso estacionario sin hatch no existe difusión perimetral y los flujos radiales totales tanto en la membrana basal como en la intermedia deben ser cero. Por ello se tiene que
$J_{e,k}-J_{e,k}=0$
y
$J_{a,k}-J_{n,k}=0$
Como
| $J_{e,k}=\displaystyle\frac{1}{\Delta s}\left(\displaystyle\frac{j_{1o}}{c_{1o}}\displaystyle\frac{N_l\Delta s}{\pi R_l^2}-\displaystyle\frac{j_{1i}}{c_{1i}}\displaystyle\frac{N_{e,k}}{d_e}\right)$ |
| $J_{a,k}=\displaystyle\frac{1}{\Delta s}\left(\displaystyle\frac{j_{1o}}{c_{1o}}\displaystyle\frac{N_{e,k}}{d_e}-\displaystyle\frac{j_{1i}}{c_{1i}}\displaystyle\frac{N_{a,k}}{d_a}\right)$ |
y
| $J_{n,k}=\displaystyle\frac{1}{\Delta s}\left(\displaystyle\frac{j_{3o}}{c_{3o}}\displaystyle\frac{N_{a,k}}{d_a}-\displaystyle\frac{j_{3i}}{c_{3i}}\displaystyle\frac{N_n}{d_n}\right)$ |
se tiene que el número de moleculas de glucosa en un largo $\Delta z$ en la membrana intermedia es
| $N_{e,k}=\displaystyle\frac{(j_{3i}(N_nR_l^2c_{1i}^2c_{1o}c_{3o}d_aj_{1o}\pi+N_nR_l^2c_{1i}c_{1o}^2c_{3o}d_aj_{1i}\pi)+\Delta sN_lc_{1i}^2c_{3i}c_{3o}d_ad_nj_{1o}^2}{j_{3o}(R_l^2c_{1i}^2c_{1o}c_{3i}d_nj_{1o}\pi+R_l^2c_{1i}c_{1o}^2c_{3i}d_nj_{1i}\pi)+R_l^2c_{1o}^2c_{3i}c_{3o}d_nj_{1i}^2\pi)}$ |
ID:(8549, 0)
Algoritmo
Modell 
Variablen
Berechnungen
Berechnungen
Gleichungen
(ID 8469)
Beispiele
En el caso estacionario sin hatch no existe difusi n perimetral y los flujos radiales totales tanto en la membrana basal como en la intermedia deben ser cero. Por ello se tiene que
$J_{e,k}-J_{e,k}=0$
y
$J_{a,k}-J_{n,k}=0$
Como
| $J_{e,k}=\displaystyle\frac{1}{\Delta s}\left(\displaystyle\frac{j_{1o}}{c_{1o}}\displaystyle\frac{N_l\Delta s}{\pi R_l^2}-\displaystyle\frac{j_{1i}}{c_{1i}}\displaystyle\frac{N_{e,k}}{d_e}\right)$ |
| $J_{a,k}=\displaystyle\frac{1}{\Delta s}\left(\displaystyle\frac{j_{1o}}{c_{1o}}\displaystyle\frac{N_{e,k}}{d_e}-\displaystyle\frac{j_{1i}}{c_{1i}}\displaystyle\frac{N_{a,k}}{d_a}\right)$ |
y
| $J_{n,k}=\displaystyle\frac{1}{\Delta s}\left(\displaystyle\frac{j_{3o}}{c_{3o}}\displaystyle\frac{N_{a,k}}{d_a}-\displaystyle\frac{j_{3i}}{c_{3i}}\displaystyle\frac{N_n}{d_n}\right)$ |
se tiene que el n mero de moleculas de glucosa en un largo $\Delta z$ es
| $N_{e,k}=\displaystyle\frac{N_nR_l^2c_{1i}c_{1o}c_{3o}d_ej_{1i}j_{3i}\pi+\Delta sN_lc_{1i}^2c_{3i}d_ed_nj_{1o}j_{3o}+\Delta sN_lc_{1i}c_{3i}c_{3o}d_ed_nj_{1i}j_{1o}}{j_{3o}(R_l^2c_{1i}^2c_{3i}d_nj_{1o}\pi+R_l^2c_{1i}c_{1o}c_{3i}d_nj_{1i}\pi)+R_l^2c_{1o}c_{3i}c_{3o}d_nj_{1i}^2\pi)}$ |
(ID 8548)
En el caso estacionario sin hatch no existe difusi n perimetral y los flujos radiales totales tanto en la membrana basal como en la intermedia deben ser cero. Por ello se tiene que
$J_{e,k}-J_{e,k}=0$
y
$J_{a,k}-J_{n,k}=0$
Como
| $J_{e,k}=\displaystyle\frac{1}{\Delta s}\left(\displaystyle\frac{j_{1o}}{c_{1o}}\displaystyle\frac{N_l\Delta s}{\pi R_l^2}-\displaystyle\frac{j_{1i}}{c_{1i}}\displaystyle\frac{N_{e,k}}{d_e}\right)$ |
| $J_{a,k}=\displaystyle\frac{1}{\Delta s}\left(\displaystyle\frac{j_{1o}}{c_{1o}}\displaystyle\frac{N_{e,k}}{d_e}-\displaystyle\frac{j_{1i}}{c_{1i}}\displaystyle\frac{N_{a,k}}{d_a}\right)$ |
y
| $J_{n,k}=\displaystyle\frac{1}{\Delta s}\left(\displaystyle\frac{j_{3o}}{c_{3o}}\displaystyle\frac{N_{a,k}}{d_a}-\displaystyle\frac{j_{3i}}{c_{3i}}\displaystyle\frac{N_n}{d_n}\right)$ |
se tiene que el n mero de moleculas de glucosa en un largo $\Delta z$ en la membrana intermedia es
| $N_{e,k}=\displaystyle\frac{(j_{3i}(N_nR_l^2c_{1i}^2c_{1o}c_{3o}d_aj_{1o}\pi+N_nR_l^2c_{1i}c_{1o}^2c_{3o}d_aj_{1i}\pi)+\Delta sN_lc_{1i}^2c_{3i}c_{3o}d_ad_nj_{1o}^2}{j_{3o}(R_l^2c_{1i}^2c_{1o}c_{3i}d_nj_{1o}\pi+R_l^2c_{1i}c_{1o}^2c_{3i}d_nj_{1i}\pi)+R_l^2c_{1o}^2c_{3i}c_{3o}d_nj_{1i}^2\pi)}$ |
(ID 8549)
ID:(1032, 0)
