Benützer:


Algoritmo

Storyboard

>Modell

ID:(1032, 0)



Limite estacioanrio Membrana Basal sin Hatch

Beschreibung

En el caso estacionario sin hatch no existe difusión perimetral y los flujos radiales totales tanto en la membrana basal como en la intermedia deben ser cero. Por ello se tiene que

$J_{e,k}-J_{e,k}=0$

y

$J_{a,k}-J_{n,k}=0$

Como

$J_{e,k}=\displaystyle\frac{1}{\Delta s}\left(\displaystyle\frac{j_{1o}}{c_{1o}}\displaystyle\frac{N_l\Delta s}{\pi R_l^2}-\displaystyle\frac{j_{1i}}{c_{1i}}\displaystyle\frac{N_{e,k}}{d_e}\right)$



$J_{a,k}=\displaystyle\frac{1}{\Delta s}\left(\displaystyle\frac{j_{1o}}{c_{1o}}\displaystyle\frac{N_{e,k}}{d_e}-\displaystyle\frac{j_{1i}}{c_{1i}}\displaystyle\frac{N_{a,k}}{d_a}\right)$



y

$J_{n,k}=\displaystyle\frac{1}{\Delta s}\left(\displaystyle\frac{j_{3o}}{c_{3o}}\displaystyle\frac{N_{a,k}}{d_a}-\displaystyle\frac{j_{3i}}{c_{3i}}\displaystyle\frac{N_n}{d_n}\right)$



se tiene que el número de moleculas de glucosa en un largo $\Delta z$ es

$N_{e,k}=\displaystyle\frac{N_nR_l^2c_{1i}c_{1o}c_{3o}d_ej_{1i}j_{3i}\pi+\Delta sN_lc_{1i}^2c_{3i}d_ed_nj_{1o}j_{3o}+\Delta sN_lc_{1i}c_{3i}c_{3o}d_ed_nj_{1i}j_{1o}}{j_{3o}(R_l^2c_{1i}^2c_{3i}d_nj_{1o}\pi+R_l^2c_{1i}c_{1o}c_{3i}d_nj_{1i}\pi)+R_l^2c_{1o}c_{3i}c_{3o}d_nj_{1i}^2\pi)}$

ID:(8548, 0)



Limite estacionario Membrana Intermedia sin Hatch

Beschreibung

En el caso estacionario sin hatch no existe difusión perimetral y los flujos radiales totales tanto en la membrana basal como en la intermedia deben ser cero. Por ello se tiene que

$J_{e,k}-J_{e,k}=0$

y

$J_{a,k}-J_{n,k}=0$

Como

$J_{e,k}=\displaystyle\frac{1}{\Delta s}\left(\displaystyle\frac{j_{1o}}{c_{1o}}\displaystyle\frac{N_l\Delta s}{\pi R_l^2}-\displaystyle\frac{j_{1i}}{c_{1i}}\displaystyle\frac{N_{e,k}}{d_e}\right)$



$J_{a,k}=\displaystyle\frac{1}{\Delta s}\left(\displaystyle\frac{j_{1o}}{c_{1o}}\displaystyle\frac{N_{e,k}}{d_e}-\displaystyle\frac{j_{1i}}{c_{1i}}\displaystyle\frac{N_{a,k}}{d_a}\right)$



y

$J_{n,k}=\displaystyle\frac{1}{\Delta s}\left(\displaystyle\frac{j_{3o}}{c_{3o}}\displaystyle\frac{N_{a,k}}{d_a}-\displaystyle\frac{j_{3i}}{c_{3i}}\displaystyle\frac{N_n}{d_n}\right)$



se tiene que el número de moleculas de glucosa en un largo $\Delta z$ en la membrana intermedia es

$N_{e,k}=\displaystyle\frac{(j_{3i}(N_nR_l^2c_{1i}^2c_{1o}c_{3o}d_aj_{1o}\pi+N_nR_l^2c_{1i}c_{1o}^2c_{3o}d_aj_{1i}\pi)+\Delta sN_lc_{1i}^2c_{3i}c_{3o}d_ad_nj_{1o}^2}{j_{3o}(R_l^2c_{1i}^2c_{1o}c_{3i}d_nj_{1o}\pi+R_l^2c_{1i}c_{1o}^2c_{3i}d_nj_{1i}\pi)+R_l^2c_{1o}^2c_{3i}c_{3o}d_nj_{1i}^2\pi)}$

ID:(8549, 0)



Algoritmo

Modell

Variablen

Symbol
Text
Variable
Wert
Einheiten
Berechnen
MKS-Wert
MKS-Einheiten
$c_o$
c_o
Concentración Externo
1/m^3
$c_i$
c_i
Concentración Interno
1/m^3
$c_{so}$
c_so
Concentración Saturada Externa
1/m^3
$c_{si}$
c_si
Concentración Saturada Interna
1/m^3
$j_{so}$
j_so
Flujo Saturado por Largo Externo
$j_{si}$
j_si
Flujo Saturado por Largo Interno
$J_V$
J_V
Fluss
m^3/s
$\Delta z$
Dz
Largo de Capilar
m

Berechnungen


Zuerst die Gleichung auswählen:   zu ,  dann die Variable auswählen:   zu 

Symbol
Gleichung
Gelöst
Übersetzt

Berechnungen

Symbol
Gleichung
Gelöst
Übersetzt

 Variable   Gegeben   Berechnen   Ziel :   Gleichung   Zu verwenden



Gleichungen


Beispiele

En el caso estacionario sin hatch no existe difusi n perimetral y los flujos radiales totales tanto en la membrana basal como en la intermedia deben ser cero. Por ello se tiene que

$J_{e,k}-J_{e,k}=0$

y

$J_{a,k}-J_{n,k}=0$

Como

$J_{e,k}=\displaystyle\frac{1}{\Delta s}\left(\displaystyle\frac{j_{1o}}{c_{1o}}\displaystyle\frac{N_l\Delta s}{\pi R_l^2}-\displaystyle\frac{j_{1i}}{c_{1i}}\displaystyle\frac{N_{e,k}}{d_e}\right)$



$J_{a,k}=\displaystyle\frac{1}{\Delta s}\left(\displaystyle\frac{j_{1o}}{c_{1o}}\displaystyle\frac{N_{e,k}}{d_e}-\displaystyle\frac{j_{1i}}{c_{1i}}\displaystyle\frac{N_{a,k}}{d_a}\right)$



y

$J_{n,k}=\displaystyle\frac{1}{\Delta s}\left(\displaystyle\frac{j_{3o}}{c_{3o}}\displaystyle\frac{N_{a,k}}{d_a}-\displaystyle\frac{j_{3i}}{c_{3i}}\displaystyle\frac{N_n}{d_n}\right)$



se tiene que el n mero de moleculas de glucosa en un largo $\Delta z$ es

$N_{e,k}=\displaystyle\frac{N_nR_l^2c_{1i}c_{1o}c_{3o}d_ej_{1i}j_{3i}\pi+\Delta sN_lc_{1i}^2c_{3i}d_ed_nj_{1o}j_{3o}+\Delta sN_lc_{1i}c_{3i}c_{3o}d_ed_nj_{1i}j_{1o}}{j_{3o}(R_l^2c_{1i}^2c_{3i}d_nj_{1o}\pi+R_l^2c_{1i}c_{1o}c_{3i}d_nj_{1i}\pi)+R_l^2c_{1o}c_{3i}c_{3o}d_nj_{1i}^2\pi)}$

(ID 8548)

En el caso estacionario sin hatch no existe difusi n perimetral y los flujos radiales totales tanto en la membrana basal como en la intermedia deben ser cero. Por ello se tiene que

$J_{e,k}-J_{e,k}=0$

y

$J_{a,k}-J_{n,k}=0$

Como

$J_{e,k}=\displaystyle\frac{1}{\Delta s}\left(\displaystyle\frac{j_{1o}}{c_{1o}}\displaystyle\frac{N_l\Delta s}{\pi R_l^2}-\displaystyle\frac{j_{1i}}{c_{1i}}\displaystyle\frac{N_{e,k}}{d_e}\right)$



$J_{a,k}=\displaystyle\frac{1}{\Delta s}\left(\displaystyle\frac{j_{1o}}{c_{1o}}\displaystyle\frac{N_{e,k}}{d_e}-\displaystyle\frac{j_{1i}}{c_{1i}}\displaystyle\frac{N_{a,k}}{d_a}\right)$



y

$J_{n,k}=\displaystyle\frac{1}{\Delta s}\left(\displaystyle\frac{j_{3o}}{c_{3o}}\displaystyle\frac{N_{a,k}}{d_a}-\displaystyle\frac{j_{3i}}{c_{3i}}\displaystyle\frac{N_n}{d_n}\right)$



se tiene que el n mero de moleculas de glucosa en un largo $\Delta z$ en la membrana intermedia es

$N_{e,k}=\displaystyle\frac{(j_{3i}(N_nR_l^2c_{1i}^2c_{1o}c_{3o}d_aj_{1o}\pi+N_nR_l^2c_{1i}c_{1o}^2c_{3o}d_aj_{1i}\pi)+\Delta sN_lc_{1i}^2c_{3i}c_{3o}d_ad_nj_{1o}^2}{j_{3o}(R_l^2c_{1i}^2c_{1o}c_{3i}d_nj_{1o}\pi+R_l^2c_{1i}c_{1o}^2c_{3i}d_nj_{1i}\pi)+R_l^2c_{1o}^2c_{3i}c_{3o}d_nj_{1i}^2\pi)}$

(ID 8549)


ID:(1032, 0)