Refraction when crossing a Flat Body

Storyboard

When the beam strikes a flat medium of defined interposed thickness, it penetrates with a different angle of refraction from the incident. This may be both greater and less than the angle of incidence depending on the respective refractive indices. Once the beam reaches the second edge of the medium, the process is reversed so that the beam returns to its original direction, only out of date.

>Model

ID:(1375, 0)



Refracción de la luz

Definition

Paso de la luz por un objeto

ID:(1853, 0)



Refraction when crossing a Flat Body

Description

When the beam strikes a flat medium of defined interposed thickness, it penetrates with a different angle of refraction from the incident. This may be both greater and less than the angle of incidence depending on the respective refractive indices. Once the beam reaches the second edge of the medium, the process is reversed so that the beam returns to its original direction, only out of date.

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\theta_i$
theta_i
Angulo de incidente
rad
$\theta_r$
theta_r
Angulo de refracción
rad
$n_i$
n_i
Indice de refracción en el medio incidente
-
$h$
h
Medium Thickness
m
$d$
d
Ray Shift
m
$n_e$
n_e
Refractive Index over the Medium 1 to Medium 2
-

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations

Como la relaci n entre los ngulos de incidencia y refracci n es

$\displaystyle\frac{ \sin \theta_i }{\sin \theta_r }=\displaystyle\frac{ c_i }{ c_e }$



y el indice de refracci n se define como

$ n =\displaystyle\frac{ c }{ v }$

\\n\\nse tiene que con\\n\\n

$n_i=\displaystyle\frac{c}{c_i}$

y\\n\\n

$n_e=\displaystyle\frac{c}{c_e}$

\\n\\nque\\n\\n

$\displaystyle\frac{c_i}{c_e}=\displaystyle\frac{c_i}{c}\displaystyle\frac{c}{c_e}=\displaystyle\frac{n_e}{n_i}=\displaystyle\frac{\sin\theta_i}{\sin\theta_e}$



por lo que resulta

$ n_i \sin \theta_i = n_e \sin \theta_r $

(ID 3343)


Examples

La ley de Snell para el paso de la luz de un medio de indice n_i bajo un ngulo \theta_i a un medio de indice n_e en que se refracta bajo un angulo \theta_e se escribe como:

$ n_i \sin \theta_i = n_e \sin \theta_r $

(ID 3343)

Paso de la luz por un objeto

(ID 1853)

Para calcular la distancia d se puede escribir

d=x_2\cos\theta_2

Para obtener x_2 se puede empelar

x_1-x_2=h\tan\theta_1

y se puede obtener x_1 de

x_1=h\tan\theta_2

Con ello se obtiene

$ d = h \displaystyle\frac{\sin( \theta_1 - \theta_2 )}{\cos \theta_1 }$

(ID 3345)


ID:(1375, 0)