Utilizador:


Interceptar em aceleração angular constante

Storyboard

Os objetos podem cruzar-se quando coincidem no ângulo no mesmo instante. Para isso, devem mover-se desde os seus respectivos ângulos e velocidades angulares iniciais com acelerações angulares que lhes permitam coincidir no ângulo e no tempo no final do percurso.

>Modelo

ID:(1451, 0)



Evolução do ângulo dos corpos

Citar

No caso de um movimento de dois corpos, o ângulo em que a trajetória do primeiro termina coincide com o do segundo corpo em la ângulo de intersecção ($\theta$).

Da mesma forma, o tempo em que a trajetória do primeiro termina coincide com a do segundo corpo em o tempo de interseção ($t$).

Para o primeiro corpo, la ângulo de intersecção ($\theta$) depende de o ângulo inicial do primeiro corpo ($\theta_1$), la velocidade angular inicial do primeiro corpo ($\omega_{01}$), la aceleração angular do primeiro corpo ($\alpha_1$), o tempo inicial do primeiro objeto ($t_1$), conforme:

$ \theta = \theta_1 + \omega_{01} ( t - t_1 )+\displaystyle\frac{1}{2} \alpha_1 ( t - t_1 )^2$



Enquanto que para o segundo corpo, la ângulo de intersecção ($\theta$) depende de o ângulo inicial do segundo corpo ($\theta_2$), la velocidade angular inicial do segundo corpo ($\omega_{02}$), la aceleração angular do segundo corpo ($\alpha_2$), o tempo inicial do segundo objeto ($t_2$), conforme:

$ \theta = \theta_2 + \omega_{02} ( t - t_2 )+\displaystyle\frac{1}{2} \alpha_2 ( t - t_2 )^2$



Isso é representado como:

ID:(12514, 0)



Interceptar em aceleração angular constante

Descrição

Os objetos podem cruzar-se quando coincidem no ângulo no mesmo instante. Para isso, devem mover-se desde os seus respectivos ângulos e velocidades angulares iniciais com acelerações angulares que lhes permitam coincidir no ângulo e no tempo no final do percurso.

Variáveis

Símbolo
Texto
Variáve
Valor
Unidades
Calcular
Valeur MKS
Unidades MKS
$\alpha_1$
alpha_1
Aceleração angular do primeiro corpo
rad/s^2
$\alpha_2$
alpha_2
Aceleração angular do segundo corpo
rad/s^2
$a_2$
a_2
Aceleração do segundo corpo
m/s^2
$\theta$
theta
Ângulo de intersecção
rad
$\theta_1$
theta_1
Ângulo inicial do primeiro corpo
rad
$\theta_2$
theta_2
Ângulo inicial do segundo corpo
rad
$\Delta\theta_1$
Dtheta_1
Ângulo percorrido pelo primeiro corpo
rad
$\Delta\theta_2$
Dtheta_2
Ângulo percorrido pelo segundo corpo
rad
$\Delta\omega_1$
Domega_1
Diferença de velocidade angular do primeiro corpo
rad/s
$\Delta\omega_2$
Domega_2
Diferença de velocidade angular do segundo corpo
rad/s
$a_1$
a_1
Primeira aceleração corporal
m/s^2
$r$
r
Rádio
m
$t$
t
Tempo de interseção
s
$\Delta t_1$
Dt_1
Tempo de percurso do primeiro objeto
s
$\Delta t_2$
Dt_2
Tempo de percurso do segundo objeto
s
$t_1$
t_1
Tempo inicial do primeiro objeto
s
$t_2$
t_2
Tempo inicial do segundo objeto
s
$\omega_1$
omega_1
Velocidade angular final do primeiro corpo
rad/s
$\omega_2$
omega_2
Velocidade angular final do segundo corpo
rad/s
$\omega_{01}$
omega_01
Velocidade angular inicial do primeiro corpo
rad/s
$\omega_{02}$
omega_02
Velocidade angular inicial do segundo corpo
rad/s

Cálculos


Primeiro, selecione a equação:   para ,  depois, selecione a variável:   para 

Símbolo
Equação
Resolvido
Traduzido

Cálculos

Símbolo
Equação
Resolvido
Traduzido

 Variáve   Dado   Calcular   Objetivo :   Equação   A ser usado



Equações

A defini o da acelera o angular m dia baseada no ngulo percorrido

$ \Delta\omega = \omega_2 - \omega_1 $



e no tempo decorrido

$ \Delta t \equiv t - t_0 $



A rela o entre os dois definida como a acelera o angular m dia

$ \bar{\alpha} \equiv \displaystyle\frac{ \Delta\omega }{ \Delta t }$

dentro desse intervalo de tempo.

(ID 3234)

A defini o da acelera o angular m dia baseada no ngulo percorrido

$ \Delta\omega = \omega_2 - \omega_1 $



e no tempo decorrido

$ \Delta t \equiv t - t_0 $



A rela o entre os dois definida como a acelera o angular m dia

$ \bar{\alpha} \equiv \displaystyle\frac{ \Delta\omega }{ \Delta t }$

dentro desse intervalo de tempo.

(ID 3234)

Dado que la aceleração média ($\bar{a}$) igual a la diferença de velocidade ($\Delta v$) e o tempo decorrido ($\Delta t$) conforme

$ \bar{a} \equiv\displaystyle\frac{ \Delta v }{ \Delta t }$



e la aceleração angular média ($\bar{\alpha}$) igual a la diferença de velocidades angulares ($\Delta\omega$) e o tempo decorrido ($\Delta t$) conforme

$ \bar{\alpha} \equiv \displaystyle\frac{ \Delta\omega }{ \Delta t }$



deduz-se que

$\bar{a}=\displaystyle\frac{\Delta v}{\Delta t}=r\displaystyle\frac{\Delta\omega}{\Delta t}=\bar{\alpha}$



Assumindo que la aceleração angular média ($\bar{\alpha}$) igual a la aceleração angular constante ($\alpha_0$)

$ \bar{\alpha} = \alpha_0 $



e supondo que la aceleração média ($\bar{a}$) igual a la aceleração constante ($a_0$)

$ a_0 = \bar{a} $



obt m-se a seguinte equa o:

$ a = r \alpha $

(ID 3236)

Dado que la aceleração média ($\bar{a}$) igual a la diferença de velocidade ($\Delta v$) e o tempo decorrido ($\Delta t$) conforme

$ \bar{a} \equiv\displaystyle\frac{ \Delta v }{ \Delta t }$



e la aceleração angular média ($\bar{\alpha}$) igual a la diferença de velocidades angulares ($\Delta\omega$) e o tempo decorrido ($\Delta t$) conforme

$ \bar{\alpha} \equiv \displaystyle\frac{ \Delta\omega }{ \Delta t }$



deduz-se que

$\bar{a}=\displaystyle\frac{\Delta v}{\Delta t}=r\displaystyle\frac{\Delta\omega}{\Delta t}=\bar{\alpha}$



Assumindo que la aceleração angular média ($\bar{\alpha}$) igual a la aceleração angular constante ($\alpha_0$)

$ \bar{\alpha} = \alpha_0 $



e supondo que la aceleração média ($\bar{a}$) igual a la aceleração constante ($a_0$)

$ a_0 = \bar{a} $



obt m-se a seguinte equa o:

$ a = r \alpha $

(ID 3236)

Se assumirmos que la aceleração angular média ($\bar{\alpha}$) constante, equivalente a la aceleração angular constante ($\alpha_0$), ent o a seguinte equa o se aplica:

$ \bar{\alpha} = \alpha_0 $



Portanto, considerando la diferença de velocidades angulares ($\Delta\omega$) junto com la velocidade angular ($\omega$) e la velocidade angular inicial ($\omega_0$):

$ \Delta\omega = \omega_2 - \omega_1 $



e o tempo decorrido ($\Delta t$) em rela o a o tempo ($t$) e o tempo inicial ($t_0$):

$ \Delta t \equiv t - t_0 $



a equa o para la aceleração angular média ($\bar{\alpha}$):

$ \bar{\alpha} \equiv \displaystyle\frac{ \Delta\omega }{ \Delta t }$



pode ser expressa como:

$\alpha_0 = \alpha = \displaystyle\frac{\Delta \omega}{\Delta t} = \displaystyle\frac{\omega - \omega_0}{t - t_0}$



Resolvendo isso, obtemos:

$ \omega = \omega_0 + \alpha_0 ( t - t_0 )$

(ID 3237)

Se assumirmos que la aceleração angular média ($\bar{\alpha}$) constante, equivalente a la aceleração angular constante ($\alpha_0$), ent o a seguinte equa o se aplica:

$ \bar{\alpha} = \alpha_0 $



Portanto, considerando la diferença de velocidades angulares ($\Delta\omega$) junto com la velocidade angular ($\omega$) e la velocidade angular inicial ($\omega_0$):

$ \Delta\omega = \omega_2 - \omega_1 $



e o tempo decorrido ($\Delta t$) em rela o a o tempo ($t$) e o tempo inicial ($t_0$):

$ \Delta t \equiv t - t_0 $



a equa o para la aceleração angular média ($\bar{\alpha}$):

$ \bar{\alpha} \equiv \displaystyle\frac{ \Delta\omega }{ \Delta t }$



pode ser expressa como:

$\alpha_0 = \alpha = \displaystyle\frac{\Delta \omega}{\Delta t} = \displaystyle\frac{\omega - \omega_0}{t - t_0}$



Resolvendo isso, obtemos:

$ \omega = \omega_0 + \alpha_0 ( t - t_0 )$

(ID 3237)

No caso de la aceleração angular constante ($\alpha_0$), la velocidade angular ($\omega$) como fun o de o tempo ($t$) segue uma rela o linear com o tempo inicial ($t_0$) e la velocidade angular inicial ($\omega_0$) na forma:

$ \omega = \omega_0 + \alpha_0 ( t - t_0 )$



Dado que o deslocamento angular igual rea sob a curva de velocidade angular-tempo, neste caso, pode-se adicionar as contribui es do ret ngulo:

$\omega_0(t-t_0)$



e do tri ngulo:

$\displaystyle\frac{1}{2}\alpha_0(t-t_0)^2$



Isso nos leva express o para o ângulo ($\theta$) e o ângulo inicial ($\theta_0$):

$ \theta = \theta_0 + \omega_0 ( t - t_0 )+\displaystyle\frac{1}{2} \alpha_0 ( t - t_0 )^2$

(ID 3682)

No caso de la aceleração angular constante ($\alpha_0$), la velocidade angular ($\omega$) como fun o de o tempo ($t$) segue uma rela o linear com o tempo inicial ($t_0$) e la velocidade angular inicial ($\omega_0$) na forma:

$ \omega = \omega_0 + \alpha_0 ( t - t_0 )$



Dado que o deslocamento angular igual rea sob a curva de velocidade angular-tempo, neste caso, pode-se adicionar as contribui es do ret ngulo:

$\omega_0(t-t_0)$



e do tri ngulo:

$\displaystyle\frac{1}{2}\alpha_0(t-t_0)^2$



Isso nos leva express o para o ângulo ($\theta$) e o ângulo inicial ($\theta_0$):

$ \theta = \theta_0 + \omega_0 ( t - t_0 )+\displaystyle\frac{1}{2} \alpha_0 ( t - t_0 )^2$

(ID 3682)

Se resolvermos o tempo na equa o de la velocidade angular ($\omega$) que inclui as vari veis la velocidade angular inicial ($\omega_0$), o tempo ($t$), o tempo inicial ($t_0$) e la aceleração angular constante ($\alpha_0$):

$ \omega = \omega_0 + \alpha_0 ( t - t_0 )$



obtemos a seguinte express o para o tempo:

$t - t_0 = \displaystyle\frac{\omega - \omega_0}{\alpha_0}$



Esta solu o pode ser substitu da na equa o para calcular o ângulo ($\theta$) usando o ângulo inicial ($\theta_0$) da seguinte forma:

$ \theta = \theta_0 + \omega_0 ( t - t_0 )+\displaystyle\frac{1}{2} \alpha_0 ( t - t_0 )^2$



o que resulta na seguinte equa o:

$ \theta = \theta_0 +\displaystyle\frac{ \omega ^2- \omega_0 ^2}{2 \alpha_0 }$

(ID 4386)

Se resolvermos o tempo na equa o de la velocidade angular ($\omega$) que inclui as vari veis la velocidade angular inicial ($\omega_0$), o tempo ($t$), o tempo inicial ($t_0$) e la aceleração angular constante ($\alpha_0$):

$ \omega = \omega_0 + \alpha_0 ( t - t_0 )$



obtemos a seguinte express o para o tempo:

$t - t_0 = \displaystyle\frac{\omega - \omega_0}{\alpha_0}$



Esta solu o pode ser substitu da na equa o para calcular o ângulo ($\theta$) usando o ângulo inicial ($\theta_0$) da seguinte forma:

$ \theta = \theta_0 + \omega_0 ( t - t_0 )+\displaystyle\frac{1}{2} \alpha_0 ( t - t_0 )^2$



o que resulta na seguinte equa o:

$ \theta = \theta_0 +\displaystyle\frac{ \omega ^2- \omega_0 ^2}{2 \alpha_0 }$

(ID 4386)


Exemplos


(ID 15416)

Em um cen rio de movimento de dois corpos, o primeiro altera la diferença de velocidade angular do primeiro corpo ($\Delta\omega_1$) durante la tempo de percurso do primeiro objeto ($\Delta t_1$) com la aceleração angular do primeiro corpo ($\alpha_1$).

$ \alpha_1 \equiv \displaystyle\frac{ \Delta\omega_1 }{ \Delta t_1 }$



Posteriormente, o segundo corpo avan a, alterando la diferença de velocidade angular do segundo corpo ($\Delta\omega_2$) durante la tempo de percurso do segundo objeto ($\Delta t_2$) com la aceleração angular do segundo corpo ($\alpha_2$).

$ \alpha_2 \equiv \displaystyle\frac{ \Delta\omega_2 }{ \Delta t_2 }$



Representado graficamente, obtemos um diagrama de velocidade e tempo como mostrado abaixo:



A chave aqui que os valores la diferença de velocidade angular do primeiro corpo ($\Delta\omega_1$) e la diferença de velocidade angular do segundo corpo ($\Delta\omega_2$), e os valores la tempo de percurso do primeiro objeto ($\Delta t_1$) e la tempo de percurso do segundo objeto ($\Delta t_2$), s o tais que ambos os corpos coincidem em ngulo e tempo.

(ID 10579)

No caso de dois corpos, o movimento do primeiro pode ser descrito por uma fun o que envolve os pontos la velocidade angular inicial do primeiro corpo ($\omega_{01}$), la velocidade angular final do primeiro corpo ($\omega_1$), o tempo de interseção ($t$) e o tempo inicial do primeiro objeto ($t_1$), representada por uma reta com uma inclina o de la aceleração angular do primeiro corpo ($\alpha_1$):

$ \omega_1 = \omega_{01} + \alpha_1 ( t - t_1 )$



Para o movimento do segundo corpo, definido pelos pontos la velocidade angular inicial do segundo corpo ($\omega_{02}$), la velocidade angular final do segundo corpo ($\omega_2$), o tempo inicial do segundo objeto ($t_2$) e o tempo de interseção ($t$), utiliza-se uma segunda reta com uma inclina o de la aceleração angular do segundo corpo ($\alpha_2$):

$ \omega_2 = \omega_{02} + \alpha_2 ( t - t_2 )$



Isso representado como:

(ID 9872)

No caso de um movimento de dois corpos, o ngulo em que a trajet ria do primeiro termina coincide com o do segundo corpo em la ângulo de intersecção ($\theta$).

Da mesma forma, o tempo em que a trajet ria do primeiro termina coincide com a do segundo corpo em o tempo de interseção ($t$).

Para o primeiro corpo, la ângulo de intersecção ($\theta$) depende de o ângulo inicial do primeiro corpo ($\theta_1$), la velocidade angular inicial do primeiro corpo ($\omega_{01}$), la aceleração angular do primeiro corpo ($\alpha_1$), o tempo inicial do primeiro objeto ($t_1$), conforme:

$ \theta = \theta_1 + \omega_{01} ( t - t_1 )+\displaystyle\frac{1}{2} \alpha_1 ( t - t_1 )^2$



Enquanto que para o segundo corpo, la ângulo de intersecção ($\theta$) depende de o ângulo inicial do segundo corpo ($\theta_2$), la velocidade angular inicial do segundo corpo ($\omega_{02}$), la aceleração angular do segundo corpo ($\alpha_2$), o tempo inicial do segundo objeto ($t_2$), conforme:

$ \theta = \theta_2 + \omega_{02} ( t - t_2 )+\displaystyle\frac{1}{2} \alpha_2 ( t - t_2 )^2$



Isso representado como:

(ID 12514)


(ID 15427)


ID:(1451, 0)