Modelo de Solido Clasico
Storyboard 
Variables
Calculations
Calculations
Equations
The elastic Force ($F_k$) is a function that depends on the modulus of Elasticity ($E$), the body Section ($S$), the elongation ($u$), and the body length ($L$).
This function can be expressed using the definition of the strain ($\sigma$)
and the definition of the deformation ($\epsilon$)
resulting in
The deformation energy ($W$) is expressed as a function of the volume ($V$), the modulus of Elasticity ($E$), and the deformation ($\epsilon$) as follows:
And with the deformation energy density ($w$) defined as:
We obtain:
Examples
La compresibilidad de un material esta definida con
lo que en este caso se puede aproximar con
La deformaci n se define como la variaci n del largo de un canto del volumen.
Con
The elastic Force ($F_k$) is a function that depends on the modulus of Elasticity ($E$), the body Section ($S$), the elongation ($u$), and the body length ($L$).
This function can be rewritten using the definitions of the strain ($\sigma$) and the deformation ($\epsilon$), resulting in the continuous version of Hooke's Law:
Si se considera un cubo de largo, ancho y alto
con
$L(1+\epsilon)L(1-\nu\epsilon)L(1-\nu\epsilon)=L^3(1-\nu\epsilon-\nu^2\epsilon^2+\nu^3\epsilon^3)$
\\n\\nSi se introduce el volumen
$V_0+dV=V_0(1+\epsilon-2\nu\epsilon)$
o en la aproximaci n de peque as deformaciones con
Como el volumen deformado es con
$\sigma = E\epsilon$
\\n\\ncon
$\Delta p=-\displaystyle\frac{1}{2}(\sigma_1+\sigma_2+\sigma_3)$
\\n\\nEn el caso de que solo se tiene tensi n en un eje\\n\\n
$\sigma_1=\sigma,,\sigma_2=\sigma_3=0$
se tiene que con
por lo que se puede reescribir con
The deformation energy ($W$) as a function of the volume ($V$), the modulus of Elasticity ($E$), and the deformation ($\epsilon$) is equal to
So, if we divide by the volume ($V$), we obtain the deformation energy density ($w$), which is defined as
Como la energ a potencial es con
y la deformaci n es con
$U=\displaystyle\frac{E}{2(1-2\nu)^2}\displaystyle\frac{\Delta V^2}{V^2}$
Con la compresibilidad con
se tiene con
ID:(861, 0)
