Paramagnetismo

Storyboard

Paramagnetics are materials that under an external magnetic field polarize creating their own magnetic field. However this is not permanent, that is to say when they are removed from the external field they return to a state of magnetic depolarization.

>Model

ID:(488, 0)



Magnetization

Definition

Paramagnetism describes a behavior in which materials can be magnetized based on an applied external magnetic field. In this sense, they do not remain magnetized and lose this property as soon as the external field is removed.

Materials with paramagnetic properties include magnesium, molybdenum, lithium, and tantalum.

ID:(12106, 0)



Paramagnet

Image

Paramagnetism describes a behavior in which materials can become magnetized in response to an applied external magnetic field, but they do not retain the magnetization when the external magnetic field is removed.



Paramagnetism originates from three types of magnetic moments:

• The magnetic moment of the nucleus (denoted as $\mu_n$)
• The magnetic moment of the electrons (denoted as $\mu_s$)
• The magnetic moment resulting from the motion of electrons in the orbitals (denoted as $\mu_l$)

The first of these magnetic moments is generally much smaller than the other two and is often negligible. The total magnetic moment of the electron ($S$) and orbital ($L$) magnetic moments can be calculated using the formula:

$\mu_{L+S}=\sqrt{4S(S+1)+L(L+1)}\mu_B$

where $\mu_B$ is the Bohr magneton.

ID:(12107, 0)



Ferro, para and diamagnetic materials

Note

Every element can be classified as ferromagnetic, paramagnetic, or diamagnetic with varying levels of magnetization sensitivity. Elements that are ferromagnetic, paramagnetic, or diamagnetic can be identified based on their magnetic properties, and it's important to use the appropriate scales when working with these values.

For general data on these classifications, additional resources can be consulted at: Datos.

ID:(12117, 0)



Paramagnetismo

Storyboard

Paramagnetics are materials that under an external magnetic field polarize creating their own magnetic field. However this is not permanent, that is to say when they are removed from the external field they return to a state of magnetic depolarization.

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$H$
H
Campo magnético
kg/C s
$S_z$
S_z
Componente $z$ del spin
kg m^2/s
$k_B$
k_B
Constante de Boltzmann
kg m^2/s^2 K
$\hbar$
hbar
Constante de Planck dividia con $2\pi$
J s
$E_0$
E_0
Energía del spin en el campo externo
J
$\beta$
beta
Factor $\beta$
C m^2/s
$\eta$
eta
Factor $\eta$
-
$g$
g
Factor g
-
$B_s(\eta)$
B_s
Función de Brillouin de $\eta$
-
$Z$
Z
Función de partición del paramagneto
-
$\mu_B$
mu_B
Magneton de Bohr
C m^2/s
$\vec{\mu}$
&mu
Momento magnético
C m^2/s
$\bar{\mu}$
mu_m
Momento magnético medio
C m^2/s
$m$
m
Numero cuántico
-
$s$
s
Numero cuántico máximo
-
$N$
N
Números de partículas
-
$\gamma$
gamma
Radio giroscópico
C/kg
$T$
T
Temperatura
K
$T_H$
T_H
Temperatura característica
K

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

Paramagnetism describes a behavior in which materials can be magnetized based on an applied external magnetic field. In this sense, they do not remain magnetized and lose this property as soon as the external field is removed.

image

Materials with paramagnetic properties include magnesium, molybdenum, lithium, and tantalum.

Paramagnetism describes a behavior in which materials can become magnetized in response to an applied external magnetic field, but they do not retain the magnetization when the external magnetic field is removed.

image

Paramagnetism originates from three types of magnetic moments:

• The magnetic moment of the nucleus (denoted as $\mu_n$)
• The magnetic moment of the electrons (denoted as $\mu_s$)
• The magnetic moment resulting from the motion of electrons in the orbitals (denoted as $\mu_l$)

The first of these magnetic moments is generally much smaller than the other two and is often negligible. The total magnetic moment of the electron ($S$) and orbital ($L$) magnetic moments can be calculated using the formula:

$\mu_{L+S}=\sqrt{4S(S+1)+L(L+1)}\mu_B$

where $\mu_B$ is the Bohr magneton.

Every element can be classified as ferromagnetic, paramagnetic, or diamagnetic with varying levels of magnetization sensitivity. Elements that are ferromagnetic, paramagnetic, or diamagnetic can be identified based on their magnetic properties, and it's important to use the appropriate scales when working with these values.

image

For general data on these classifications, additional resources can be consulted at: Datos.

La energ a magn tica de un tomo \epsilon se puede calcular con list de

equation

en donde \vec{\mu} es el momento magn tico y \vec{H} es el campo magn tico.

El momento magn tico de un tomo es con list igual a

equation\\n\\ndonde \\n\\n

$\gamma\equiv\displaystyle\frac{e}{2m_e}=8.7821\times 10^{10} C/kg$

es el radio girosc pico, con e la carga del electr n, y m_e la masa del electr n.

Si el campo esta en direcci n \hat{z} solo sera relevante la componente del Spin en esta direcci n. Sus valores ser n m ltiplos de la constante de Planck dividida por 2\pi o sea con list

equation

con m=-s,-s+1,\ldots,s-1,s.

El momento magn tico se puede expresa con list=3656 del orden de uno:

equation=3656



Si el campo esta orientado en direcci n del eje z se puede reescribir con list=12109 el spin

equation=12109\\n\\ny con ello la energ a como\\n\\n

$\epsilon=-g\gamma\vec{S}\cdot\vec{H}=-g\gamma HS_z=-g\gamma\hbar Hm$

\\n\\nSi se introduce el magneto de Bohr como\\n\\n

$\mu_B=\gamma\hbar=\displaystyle\frac{e\hbar}{2m_e}=9.2613\times 10^{-24} C m^2/s$



se tiene que la energ a pueden asumir con list los valores

equation

Con la definici n de la funci n partici n para un sistema en que los elementos no se sobreponen con list=3527

equation=3527



y los niveles de energ a est n definidos con list=3657

equation=3657



se puede escribir la funci n partici n para el sistema de N tomos con list como

equation

Por analog a el campo magn tico cumple el rol de variable mientras que el momento magn tico la de una fuerza generalizada es con list es

equation

La suma de una expresi n del tipo\\n\\n

$Z=\displaystyle\sum_{m=-s}^s e^{-\eta m}$

\\n\\nse puede escribir como dos sumas desde 0 a -s y 0 a s restando el elemento 0 que se estar a sumando dos veces\\n\\n

$Z=\displaystyle\sum_{m=-s}^0 e^{-\eta m}+\displaystyle\sum_{m=0}^s e^{-\eta m}-1$

\\n\\nRealizando un cambio de variable (m>-m) en la primera suma se obtiene\\n\\n

$Z=\displaystyle\sum_{m=0}^s e^{\eta m}+\displaystyle\sum_{m=0}^s e^{-\eta m}-1$

\\n\\nDado que las sumas corresponden a series geom tricas finitas se tiene que\\n\\n

$\displaystyle\sum_{m=0}^s e^{\eta m}=\displaystyle\frac{1-e^{(s+1)\eta}}{1-e^{\eta}}$

\\n\\ny\\n\\n

$\displaystyle\sum_{m=0}^s e^{-\eta m}=\displaystyle\frac{1-e^{-(s+1)\eta}}{1-e^{-\eta}}$

\\n\\nlo que da\\n\\n

$Z=\displaystyle\frac{1-e^{(s+1)\eta}}{1-e^{\eta}}+\displaystyle\frac{1-e^{-(s+1)\eta}}{1-e^{-\eta}}-1$

\\n\\nComo\\n\\n

$\displaystyle\frac{1-e^{-(s+1)\eta}}{1-e^{-\eta}}-1=\displaystyle\frac{1-e^{-\eta s}}{e^{\eta}-1}$

\\n\\nla expresi n se puede reescribir como\\n\\n

$Z=\displaystyle\frac{1-e^{(s+1)\eta}}{1-e^{\eta}}+\displaystyle\frac{1-e^{-\eta s}}{e^{\eta}-1}=\displaystyle\frac{e^{(s+1)\eta}-e^{-\eta s}}{e^{\eta}-1}$

\\n\\nSi multiplicamos numerador y denominador por e^{-\eta/2} resulta\\n\\n

$Z=\displaystyle\frac{e^{(s+1/2)\eta}-e^{-\eta (s+1/2)}}{e^{\eta/2}-e^{-\eta/2}}$



que se puede escribir con la funci n seno hiperb lico con list como

equation

Con list=3661 el factor

equation=3661



la funci n partici n en este caso con list=3658

equation=3658



se puede sumar con list dando

equation

Por analog a el campo magn tico cumple el rol de variable mientras que el momento magn tico la de una fuerza generalizada.

Con list=3661 el factor

equation=3661



se puede definir una temperatura caracter stica con list

equation

Como la energ a de un spin en un campo magn tico se puede calcular del momento magn tico g\mu_0m y con list=3655 el campo magn tico H mediante

equation=3655



se puede asociar el campo magn tico con la variable generalizada y el momento magn tico con la fuerza generalizada. En tal caso se puede emplear la relaci n entre fuerza generalizada y funci n partici n con list=3531

equation=3531



para calcular el momento magn tico medio se puede calcular mediante con list:

equation

La derivada en el campo magn tico del logaritmo de la funci n con list=3660

equation=3660



con list=3661 la definici n

equation=3661\\n\\nes\\n\\n

$\displaystyle\frac{\partial\ln Z}{\partial H}=\displaystyle\frac{\partial\ln Z}{\partial\eta}\displaystyle\frac{\partial\eta}{\partial H}=\displaystyle\frac{g\mu_B}{kT}\frac{\partial\ln Z}{\partial \eta}\equiv \displaystyle\frac{g\mu_B}{kT} B_s(\eta)$



donde con list

equation

Como el momento de magnetizaci n medio se calcula con list

equation=3662



se tiene para la funci n partici n con list=3660

equation=3660



se tiene que con list=3664

equation=3664



el momento magn tico medio es con list

equation

En el limite de altas temperaturas el factor \eta tiende a cero por lo que como el cotangente hiperb lico tiende a\\n\\n

$coth(x)\sim\displaystyle\frac{1}{x}+\displaystyle\frac{1}{3}x$



y la funci n con list=3664

equation=3664



tiende con list a

equation

El momento magn tico con list=3659 es

equation=3659



que en el limite de altas temperaturas, con list=3663 en que

equation=3663



y \eta es con list=3661

equation=3661



se tiende con list a

equation


>Model

ID:(488, 0)