Partition Function

Storyboard

When estimating the average energy, it becomes evident that there exists a generative function with which various parameters can be calculated. This function is known as the partition function and serves as the foundation for computing properties of diverse systems.

>Model

ID:(171, 0)



Partition Function

Description

When estimating the average energy, it becomes evident that there exists a generative function with which various parameters can be calculated. This function is known as the partition function and serves as the foundation for computing properties of diverse systems.

Variables

Symbol
Text
Variable
Value
Units
Calculate
MKS Value
MKS Units
$\beta$
beta
Beta del sistema
1/J
$E_r$
E_r
Energía del estado $r$
J
$\bar{E}$
mE
Energía media del sistema
J
$Z$
Z
Función Partición
-
$r$
r
Numero del estado
-

Calculations


First, select the equation:   to ,  then, select the variable:   to 

Symbol
Equation
Solved
Translated

Calculations

Symbol
Equation
Solved
Translated

 Variable   Given   Calculate   Target :   Equation   To be used



Equations


Examples

To compute the average energy, we use the weighted average of energies from various states $r$, taking into account their respective probabilities, as represented by

$P_r=Ce^{-\beta E_r}$



This is done in the following manner:

$\bar{E}=\displaystyle\frac{\displaystyle\sum_rP_rE_r}{\displaystyle\sum_rP_r}$



The result is obtained by considering the values of

$\bar{E}=\displaystyle\frac{\displaystyle\sum_rE_re^{-\beta E_r}}{\displaystyle\sum_re^{-\beta E_r}}$

.

(ID 3526)

The average energy is determined with respect to beta del sistema $1/J$, energía del estado $r$ $J$, energía media del sistema $J$ and numero del estado $-$

$\bar{E}=\displaystyle\frac{\displaystyle\sum_rE_re^{-\beta E_r}}{\displaystyle\sum_re^{-\beta E_r}}$



and can be expressed as follows:

$\bar{E}=-\displaystyle\frac{1}{\sum_re^{-\beta E_r}}\displaystyle\frac{\partial}{\partial\beta}\sum_re^{-\beta E_r}$



This can be summarized as

$\bar{E}=-\displaystyle\frac{1}{Z}\displaystyle\frac{\partial Z}{\partial\beta}$



where we introduce the so-called partition function with beta del sistema $1/J$, energía del estado $r$ $J$, energía media del sistema $J$ and numero del estado $-$:

$Z=\displaystyle\sum_Re^{-\beta E_R}$

The letter $Z$ originates from the German word Zustandsumme (Zustand=State, Summe=sum). The partition function is a generating function, meaning it generates other functions that have physical significance.

(ID 3527)

As it is evident that

$\displaystyle\frac{\partial\ln Z}{\partial\beta} =\displaystyle\frac{1}{Z}\displaystyle\frac{\partial Z}{\partial\beta}$



and

$\bar{E}=-\displaystyle\frac{1}{Z}\displaystyle\frac{\partial Z}{\partial\beta}$



this implies that, with

$\bar{E}=-\displaystyle\frac{\partial\ln Z}{\partial\beta}$

(ID 3528)


ID:(171, 0)