Força viscosa e gravitação
Storyboard 
Quando um corpo se move em um meio viscoso sob a influência de uma força constante, como a gravidade, inicialmente a gravidade acelera o corpo até que sua velocidade aumente a um nível onde a força viscosa e a gravidade se equilibram. A partir desse ponto em diante, o corpo não sofre mais aceleração e se move a uma velocidade constante.
ID:(1965, 0)
Força viscosa e gravitação
Storyboard 
Quando um corpo se move em um meio viscoso sob a influência de uma força constante, como a gravidade, inicialmente a gravidade acelera o corpo até que sua velocidade aumente a um nível onde a força viscosa e a gravidade se equilibram. A partir desse ponto em diante, o corpo não sofre mais aceleração e se move a uma velocidade constante.
Variáveis
Cálculos
Cálculos
Equações
Dado que o momento ($p$) se define con la massa inercial ($m_i$) y la velocidade ($v$),
Si la massa inercial ($m_i$) igual a la massa inicial ($m_0$), ent o podemos derivar o momento em rela o ao tempo e obter la força com massa constante ($F$):
$F=\displaystyle\frac{d}{dt}p=m_i\displaystyle\frac{d}{dt}v=m_ia$
Portanto, chegamos conclus o de que
A equa o de movimento em la velocidade ($v$) em o tempo ($t$) com la massa inercial ($m_i$), la massa gravitacional ($m_g$), la aceleração gravitacional ($g$) e la constante de força viscosa ($b$):
juntamente com a defini o de la tempo de viscosidade e massa inercial ($\tau_i$)
e la tempo de viscosidade e massa gravitacional ($\tau_g$)
pode ser reformulada como
$\displaystyle\frac{dv}{g\tau_g - v} = \displaystyle\frac{dt}{\tau_i}$
Se integrarmos essa express o entre uma velocidade inicial ($v_0$) e la velocidade ($v$), e do tempo inicial zero at o tempo ($t$), obtemos
$\ln(g\tau_g-v_0)-\ln(g\tau_g-v)=\displaystyle\frac{t}{\tau_i}$
Resolvendo para a velocidade, obtemos
Exemplos
A for a experimentada por um corpo que se desloca com uma velocidade de ERROR:6029.1 em um meio, caracterizado por la constante de força viscosa ($b$), la força viscosa ($F_v$), como descrito pela equa o:
Para entender o papel de la constante de força viscosa ($b$), importante lembrar que a viscosidade uma medida de como o momento, ou a velocidade das mol culas, se difunde. Em outras palavras, la constante de força viscosa ($b$) a medida pela qual o corpo perde energia ao transferi-la para o meio e ao acelerar as mol culas, fornecendo-lhes energia. Portanto, la constante de força viscosa ($b$) proporcional viscosidade.
Quando uma esfera lan ada em um meio viscoso, surge uma for a inicial ascendente, uma força gravitacional ($F_g$), que afunda gradualmente o corpo. Durante esse processo, a esfera ganha velocidade, resultando em uma for a descendente, uma força viscosa ($F_v$), que depende da velocidade. Conforme a velocidade total, la força com massa constante ($F$),
come a a diminuir at se tornar nula. A partir desse momento, o movimento continua com velocidade constante, j que n o h for a para aceler -lo.
O m todo de medi o de viscosidade de Ostwald baseia-se no comportamento de um l quido fluindo atrav s de um tubo de pequeno raio (capilar).
O l quido introduzido, aplica-se suc o para exceder a marca superior e, em seguida, permite-se que escorra, medindo o tempo que leva para o n vel passar da marca superior para a inferior.
O experimento conduzido primeiro com um l quido para o qual a viscosidade e a densidade s o conhecidas (por exemplo, gua destilada), e depois com o l quido para o qual se deseja determinar a viscosidade. Se as condi es forem id nticas, o l quido fluindo em ambos os casos ser semelhante e, assim, o tempo ser proporcional densidade dividida pela viscosidade. Portanto, pode-se estabelecer uma equa o de compara o entre ambas as viscosidades:
No caso de um corpo caindo em um meio viscoso, a equa o de movimento uma equa o de la velocidade ($v$) em fun o de o tempo ($t$) com la massa gravitacional ($m_g$), la massa inercial ($m_i$), la aceleração gravitacional ($g$) e la constante de força viscosa ($b$):
Isso obtido com la tempo de viscosidade e massa inercial ($\tau_i$)
e com la tempo de viscosidade e massa gravitacional ($\tau_g$)
Integrando com tempo inicial zero e la velocidade inicial ($v_0$),
que representado abaixo:
O gr fico ilustra como a viscosidade for a o corpo a descer com uma velocidade assintótica ($v_{\infty}$), o que equivale a $g\tau_g$. Isso ocorre em um tempo da ordem de la tempo de viscosidade e massa inercial ($\tau_i$), seja quando la velocidade ($v$) menor ou maior que la velocidade assintótica ($v_{\infty}$).
No caso de um corpo caindo em um meio viscoso, a equa o de movimento uma equa o de la posição ($s$) em fun o de la aceleração gravitacional ($g$), la tempo de viscosidade e massa inercial ($\tau_i$), la tempo de viscosidade e massa gravitacional ($\tau_g$), la velocidade inicial ($v_0$) e o tempo ($t$):
A partir desta equa o, obtemos integrando com tempo inicial zero e uma velocidade ($s_0$):
que representada abaixo:
No caso de um corpo que cai em um meio viscoso, a for a total, la força com massa constante ($F$), igual a la força gravitacional ($F_g$) menos la força viscosa ($F_v$), ent o
No caso em que la massa inercial ($m_i$) igual a la massa inicial ($m_0$),
a derivada do momento ser igual massa multiplicada pela derivada de la velocidade ($v$). Dado que a derivada da velocidade la aceleração instantânea ($a$), temos que la força com massa constante ($F$) igual a
A forma mais simples de la força viscosa ($F_v$) aquela que proporcional ao la velocidade ($v$) do corpo, representada por:
A constante de proporcionalidade, tamb m conhecida como la constante de força viscosa ($b$), geralmente depende da forma do objeto e da viscosidade do meio atrav s do qual ele se move. Um exemplo desse tipo de for a aquela exercida por um fluxo de fluido em um corpo esf rico, cuja express o matem tica conhecida como a lei de Stokes.
La força gravitacional ($F_g$) baseia-se em la massa gravitacional ($m_g$) do objeto e em uma constante que reflete a intensidade da gravidade na superf cie do planeta. Esta ltima identificada por la aceleração gravitacional ($g$), que igual a $9.8 m/s^2$.
Consequentemente, conclui-se que:
As massas que Newton utilizou em seus princ pios est o relacionadas in rcia dos corpos, o que leva ao conceito de la massa inercial ($m_i$).
A lei de Newton, que est ligada for a entre corpos devido s suas massas, est relacionada gravidade, sendo conhecida como la massa gravitacional ($m_g$).
Empiricamente, concluiu-se que ambas as massas s o equivalentes, e, portanto, definimos
Einstein foi quem questionou essa igualdade e, a partir dessa d vida, compreendeu por que ambas 'aparecem' iguais em sua teoria da gravidade. Em seu argumento, Einstein explicou que as massas deformam o espa o, e essa deforma o do espa o causa uma mudan a no comportamento dos corpos. Assim, as massas acabam sendo equivalentes. O conceito revolucion rio da curvatura do espa o implica que at mesmo a luz, que n o tem massa, afetada por corpos celestes, contradizendo a teoria da gravita o de Newton. Isso foi demonstrado experimentalmente ao estudar o comportamento da luz durante um eclipse solar. Nessa situa o, os feixes de luz s o desviados devido presen a do sol, permitindo a observa o de estrelas que est o atr s dele.
La força com massa constante ($F$) igual a la força gravitacional ($F_g$) menos la força viscosa ($F_v$), ent o:
Essa rela o permite estabelecer a equa o de movimento para la aceleração instantânea ($a$) com uma massa inercial ($m_i$) caindo devido gravidade da Terra com la aceleração gravitacional ($g$), e com uma massa gravitacional ($m_g$), em la constante de força viscosa ($b$), assumir a forma de:
La massa inercial ($m_i$) que cai devido gravidade da Terra com uma aceleração gravitacional ($g$), e com uma massa gravitacional ($m_g$) em um meio viscoso com uma constante de força viscosa ($b$), apresentado da seguinte forma:
Para resolver esta equa o, necess rio lev -la sua forma diferencial. Isso alcan ado substituindo la aceleração instantânea ($a$) pela derivada de la velocidade ($v$) em o tempo ($t$):
Com a equa o de movimento de um corpo em um meio viscoso, temos a derivada de la velocidade ($v$) em o tempo ($t$) com la massa inercial ($m_i$), la massa gravitacional ($m_g$), la constante de força viscosa ($b$) e la aceleração gravitacional ($g$):
Isso define la tempo de viscosidade e massa gravitacional ($\tau_g$) como:
Com a equa o de movimento de um corpo em um meio viscoso, temos a derivada de la velocidade ($v$) em o tempo ($t$) com la constante de força viscosa ($b$) e la aceleração gravitacional ($g$):
Isso define la tempo de viscosidade e massa inercial ($\tau_i$) como:
A equa o do movimento em la velocidade ($v$) em o tempo ($t$) com la massa inercial ($m_i$), la massa gravitacional ($m_g$), la aceleração gravitacional ($g$) e la constante de força viscosa ($b$) :
Supondo que o tempo inicial seja zero, la velocidade inicial ($v_0$), la tempo de viscosidade e massa gravitacional ($\tau_g$) e la tempo de viscosidade e massa inercial ($\tau_i$), obtemos a seguinte equa o:
Esta equa o ilustra que la velocidade inicial ($v_0$) ent o converge assintoticamente para a velocidade $g\tau_g$.
A integra o da equa o do movimento resulta em la velocidade ($v$) como uma fun o de la aceleração gravitacional ($g$), la tempo de viscosidade e massa inercial ($\tau_i$), la tempo de viscosidade e massa gravitacional ($\tau_g$), la velocidade inicial ($v_0$) e o tempo ($t$) da seguinte forma:
Para o tempo ($t$) muito maior que la tempo de viscosidade e massa inercial ($\tau_i$), obt m-se o limite la velocidade assintótica ($v_{\infty}$):
A integra o da equa o do movimento resulta em la velocidade ($v$) como uma fun o de la aceleração gravitacional ($g$), la tempo de viscosidade e massa inercial ($\tau_i$), la tempo de viscosidade e massa gravitacional ($\tau_g$), la velocidade inicial ($v_0$) e o tempo ($t$) da seguinte forma:
em sua forma diferencial,
onde la posição ($s$) representa a dist ncia percorrida.
A integra o da equa o de movimento produz la posição ($s$) em termos de la aceleração gravitacional ($g$), la tempo de viscosidade e massa inercial ($\tau_i$), la tempo de viscosidade e massa gravitacional ($\tau_g$), la velocidade inicial ($v_0$) e o tempo ($t$) da seguinte forma:
do tempo inicial nulo at o tempo ($t$), e de la velocidade ($s_0$) at la posição ($s$), obtemos
ID:(1965, 0)
